Skip to main content
Log in

A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

To develop a novel model composed solely of Col I and Col III with the lower and upper limits set to include the ratios of Col I and Col III at 3:1 and 9:1 in which the structural and mechanical behavior of the resident CM can be studied. Further, the progression of fibrosis due to change in ratios of Col I:Col III was tested.

Methods

Collagen gels with varying Col I:Col III ratios to represent a healthy (3:1) and diseased myocardial tissue were prepared by manually casting them in wells. Absorbance assay was performed to confirm the gelation of the gels. Rheometric analysis was performed on each of the collagen gels prepared to determine the varying stiffnesses and rheological parameters of the gels made with varying ratios of Col I:Col III. Second Harmonic Generation (SHG) was performed to observe the 3D characterization of the collagen samples. Scanning Electron microscopy was used for acquiring cross sectional images of the lyophilized collagen gels. AC16 CM (human) cell lines were cultured in the prepared gels to study cell morphology and behavior as a result of the varying collagen ratios. Cellular proliferation was studied by performing a Cell Trace Violet Assay and the applied force on each cell was measured by means of Finite Element Analysis (FEA) on CM from each sample.

Results

Second harmonic generation microscopy used to image Col I, displayed a decrease in acquired image intensity with an increase in the non-second harmonic Col III in 3:1 gels. SEM showed a fiber-rich structure in the 3:1 gels with well-distributed pores unlike the 9:1 gels or the 1:0 controls. Rheological analysis showed a decrease in substrate stiffness with an increase of Col III, in comparison with other cases. CM cultured within 3:1 gels exhibited an elongated rod-like morphology with an average end-to-end length of 86 ± 28.8 µm characteristic of healthy CM, accompanied by higher cell growth in comparison with other cases. Finite element analysis used to estimate the forces exerted on CM cultured in the 3:1 gels, showed that the forces were well dispersed, and not concentrated within the center of cells, in comparison with other cases.

Conclusion

This study model can be adopted to simulate various biomechanical environments in which cells crosstalk with the Collagen-matrix in diseased pathologies to generate insights on strategies for prevention of fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Acosta, Y., Q. Zhang, A. Rahaman, H. Ouellet, C. Xiao, J. Sun, et al. Imaging cytosolic translocation of Mycobacteria with two-photon fluorescence resonance energy transfer microscopy. Biomed. Opt. Exp. 5(11):3990–4001, 2014. https://doi.org/10.1364/BOE.5.003990

    Article  Google Scholar 

  2. Alonso-Latorre, B., J. C. Del Alamo, J. Rodriguez-Rodriguez, A. Aliseda, R. Meili, R. Firtel, and J. C. Lasheras. Traction forces exerted by crawling cells. APS 59:002, 2006.

    Google Scholar 

  3. AnilKumar, S., S. C. Allen, N. Tasnim, T. Akter, S. Park, A. Kumar, et al. The applicability of furfuryl-gelatin as a novel bioink for tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater. 107(2):314–323, 2019. https://doi.org/10.1002/jbm.b.34123.

    Article  Google Scholar 

  4. Asgari, M., N. Latifi, H. K. Heris, H. Vali, and L. Mongeau. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep. 7(1):1–10, 2017. https://doi.org/10.1038/s41598-017-01476-y.

    Article  Google Scholar 

  5. Blissett, A. R., D. Garbellini, E. P. Calomeni, C. Mihai, T. S. Elton, and G. Agarwal. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. J. Mol. Biol. 385(3):902–911, 2009. https://doi.org/10.1016/j.jmb.2008.10.060.

    Article  Google Scholar 

  6. Bluestone, J. A., K. Herold, and G. J. N. Eisenbarth. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293, 2010.

    Article  Google Scholar 

  7. Brower, G. L., J. D. Gardner, M. F. Forman, D. B. Murray, T. Voloshenyuk, S. P. Levick, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur. J. Cardiothorac. Surg. 30(4):604–610, 2006. https://doi.org/10.1016/j.ejcts.2006.07.006.

    Article  Google Scholar 

  8. Campagnola, P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. ACS 2011. https://doi.org/10.1021/ac1032325.

    Article  Google Scholar 

  9. Carrow, J. K., P. Kerativitayanan, M. K. Jaiswal, G. Lokhande, and A. K. Gaharwar. Polymers for bioprinting. Essentials of 3D biofabrication and translation. Amsterdam: Elsevier, pp. 229–248, 2015.

    Book  Google Scholar 

  10. Chang, F., and K. C. Huang. How and why cells grow as rods. BMC Biol. 12(1):1–11, 2014. https://doi.org/10.1186/s12915-014-0054-8.

    Article  Google Scholar 

  11. Chen, Z., X. C. M. Lu, D. A. Shear, J. R. Dave, A. R. Davis, C. A. Evangelista, et al. Synergism of human amnion-derived multipotent progenitor (AMP) cells and a collagen scaffold in promoting brain wound recovery: pre-clinical studies in an experimental model of penetrating ballistic-like brain injury. Brain Res. 1368:71–81, 2011. https://doi.org/10.1016/j.brainres.2010.10.028.

    Article  Google Scholar 

  12. Chen, X., O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7(4):654–669, 2012. https://doi.org/10.1038/nprot.2012.009.

    Article  Google Scholar 

  13. Chistiakov, D. A., A. N. Orekhov, and Y. V. Bobryshev. The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp. Mol. Pathol. 101(2):231–240, 2016. https://doi.org/10.1016/j.yexmp.2016.09.002.

    Article  Google Scholar 

  14. Cox, G., E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell. 3-Dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 141(1):53–62, 2003. https://doi.org/10.1016/s1047-8477(02)00576-2.

    Article  Google Scholar 

  15. Fan, D., A. Takawale, J. Lee, and Z. Kassiri. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogen. Tissue Rep. 5(1):15, 2012. https://doi.org/10.1186/1755-1536-5-15.

    Article  Google Scholar 

  16. Frahs, S. M., J. T. Oxford, E. E. Neumann, R. J. Brown, C. R. Keller-Peck, X. Pu, et al. Extracellular matrix expression and production in fibroblast-collagen gels: towards an in vitro model for ligament wound healing. Ann. Biomed. Eng. 46(11):1882–1895, 2018. https://doi.org/10.1007/s10439-018-2064-0.

    Article  Google Scholar 

  17. Frisk, M., M. Ruud, E. K. Espe, J. M. Aronsen, Å. T. Røe, L. Zhang, et al. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis. Cardiovasc. Res. 112(1):443–451, 2016. https://doi.org/10.1093/cvr/cvw111.

    Article  Google Scholar 

  18. Gabasa, M., P. Duch, I. Jorba, A. Giménez, R. Lugo, I. Pavelescu, et al. Epithelial contribution to the profibrotic stiff microenvironment and myofibroblast population in lung fibrosis. Mol. Biol. Cell 28(26):3741–3755, 2017. https://doi.org/10.1091/mbc.e17-01-0026.

    Article  Google Scholar 

  19. Glowacki, J., and S. Mizuno. Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344, 2008. https://doi.org/10.1002/bip.20871.

    Article  Google Scholar 

  20. Göktepe, S., O. J. Abilez, K. K. Parker, and E. Kuhl. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Biol. 265(3):433–442, 2010. https://doi.org/10.1016/j.mechrescom.2012.03.005.

    Article  MATH  Google Scholar 

  21. Guo, G.-R., L. Chen, M. Rao, K. Chen, J.-P. Song, and S.-S. Hu. A modified method for isolation of human cardiomyocytes to model cardiac diseases. J. Transl. Med. 16(1):288, 2018. https://doi.org/10.1186/s12967-018-1649-6.

    Article  Google Scholar 

  22. Hadjipanayi, E., V. Mudera, and R. Brown. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J. Tissue Eng. Regen. Med. 3(2):77–84, 2009. https://doi.org/10.1002/term.136.

    Article  Google Scholar 

  23. Harvey, P. A., and L. A. Leinwand. Cellular mechanisms of cardiomyopathy. J. Cell Biol. 194(3):355–365, 2011. https://doi.org/10.1083/jcb.201101100.

    Article  Google Scholar 

  24. Huveneers, S., M. J. Daemen, and P. L. Hordijk. Between Rho (k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ. Res. 116(5):895–908, 2015. https://doi.org/10.1161/CIRCRESAHA.116.305720.

    Article  Google Scholar 

  25. Ingber, D. E., and I. Tensegrity. Cell structure and hierarchical systems biology. J. Cell Sci. 116(7):1157–1173, 2003. https://doi.org/10.1242/jcs.00359.

    Article  Google Scholar 

  26. Jian, Z., Y.-J. Chen, R. Shimkunas, Y. Jian, M. Jaradeh, K. Chavez, et al. In vivo cannulation methods for cardiomyocytes isolation from heart disease models. PLoS ONE 11(8):e0160605, 2016. https://doi.org/10.1371/journal.pone.0160605.

    Article  Google Scholar 

  27. Joddar, B., E. Garcia, A. Casas, and C. M. Stewart. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci. Rep. 6(1):1–12, 2016. https://doi.org/10.1038/srep32456.

    Article  Google Scholar 

  28. Jugdutt, B. I. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108(11):1395–1403, 2003. https://doi.org/10.1161/01.CIR.0000085658.98621.

    Article  Google Scholar 

  29. Kohl, P., and R. G. Gourdie. Fibroblast–myocyte electrotonic coupling: does it occur in native cardiac tissue? J. Mol. Cell. Cardiol. 70:37–46, 2014. https://doi.org/10.1016/j.yjmcc.2013.12.024.

    Article  Google Scholar 

  30. LaComb, R., O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola. Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt. Commun. 281(7):1823–1832, 2008. https://doi.org/10.1016/j.optcom.2007.10.040.

    Article  Google Scholar 

  31. Lewis, P. R. Forensic Polymer Engineering: Why polymer products fail in service. Sawston: Woodhead, 2016.

    Google Scholar 

  32. Li, Y., A. Asadi, M. R. Monroe, and E. P. Douglas. pH effects on collagen fibrillogenesis in vitro: electrostatic interactions and phosphate binding. Mater. Sci. Eng. C 29(5):1643–1649, 2009. https://doi.org/10.1016/j.msec.2009.01.001.

    Article  Google Scholar 

  33. Lindsey, M. L., R. P. Iyer, R. Zamilpa, A. Yabluchanskiy, K. Y. DeLeon-Pennell, M. E. Hall, et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J. Am. Coll. Cardiol. 66(12):1364–1374, 2015. https://doi.org/10.1093/cvr/cvw206.

    Article  Google Scholar 

  34. Lu, H., T. Hoshiba, N. Kawazoe, and G. Chen. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 32(10):2489–2499, 2011. https://doi.org/10.1016/j.biomaterials.2010.12.016.

    Article  Google Scholar 

  35. Lu, H., T. Hoshiba, N. Kawazoe, I. Koda, M. Song, and G. Chen. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 32(36):9658–9666, 2011. https://doi.org/10.1016/j.biomaterials.2011.08.091.

    Article  Google Scholar 

  36. Mio, T., Y. Adachi, D. J. Romberger, R. F. Ertl, and S. I. Rennard. Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. Vitro Cell. Dev. Biol. 32(7):427–433, 1996.

    Article  Google Scholar 

  37. Nielsen, M. J., and M. A. Karsdal. Chapter 3-Type III Collagen. In: Biochemistry of Collagens, Laminins and Elastin, edited by M. A. Karsdal. New York: Academic Press, 2016, pp. 21–30.

    Chapter  Google Scholar 

  38. Pandey, P., W. Hawkes, J. Hu, W. V. Megone, J. Gautrot, N. Anilkumar, et al. Cardiomyocytes sense matrix rigidity through a combination of muscle and non-muscle myosin contractions. Dev. Cell 44(3):326–336, 2018. https://doi.org/10.1016/j.devcel.2017.12.024.

    Article  Google Scholar 

  39. Pathak, M., S. Sarkar, E. Vellaichamy, and S. Sen. Role of myocytes in myocardial collagen production. Hypertension 37(3):833–840, 2001. https://doi.org/10.1161/01.hyp.37.3.833.

    Article  Google Scholar 

  40. Pauschinger, M., A. Doerner, A. Remppis, R. Tannhäuser, U. Kühl, and H.-P. Schultheiss. Differential myocardial abundance of collagen type I and type III mRNA in dilated cardiomyopathy: effects of myocardial inflammation. Cardiovasc. Res. 37(1):123–129, 1998. https://doi.org/10.1161/01.cir.99.21.2750.

    Article  Google Scholar 

  41. Ribeiro, A. J., Y.-S. Ang, J.-D. Fu, R. N. Rivas, T. M. Mohamed, G. C. Higgs, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl. Acad. Sci. 112(41):12705–12710, 2015. https://doi.org/10.1073/pnas.1508073112.

    Article  Google Scholar 

  42. Richardson, W. J., S. A. Clarke, T. A. Quinn, and J. W. Holmes. Physiological implications of myocardial scar structure. Compr. Physiol. 5(4):1877–1909, 2011. https://doi.org/10.1002/cphy.c140067.

    Article  Google Scholar 

  43. Sarber, R., B. Hull, C. Merrill, T. Sorrano, and E. Bell. Regulation of proliferation of fibroblasts of low and high population doubling levels grown in collagen lattices. Mech. Ageing Dev. 17(2):107–117, 1981. https://doi.org/10.1016/0047-6374(81)90077-4.

    Article  Google Scholar 

  44. Semeraro, R., V. Cardinale, G. Carpino, R. Gentile, C. Napoli, R. Venere, et al. The fetal liver as cell source for the regenerative medicine of liver and pancreas Ann. Transl. Med. 2013. https://doi.org/10.3978/j.issn.2305-5839.2012.10.02.

    Article  Google Scholar 

  45. Severin, E., and B. Ohnemus. Flow cytometric analysis of chromosomes and cells using a modified BrdU-Hoechst method. Histochemistry 76(1):113–121, 1982. https://doi.org/10.1007/BF00493290.

    Article  Google Scholar 

  46. Shayegan, M., and N. R. Forde. Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels. PLoS ONE 8(8):e70590, 2013. https://doi.org/10.1371/journal.pone.0070590.

    Article  Google Scholar 

  47. Stuart, K., and A. Panitch. Characterization of gels composed of blends of collagen I, collagen III, and chondroitin sulfate. Biomacromology 10(1):25–31, 2009. https://doi.org/10.1021/bm800888u.

    Article  Google Scholar 

  48. Talman, V., and H. Ruskoaho. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 365(3):563–581, 2016. https://doi.org/10.1007/s00441-016-2431-9.

    Article  Google Scholar 

  49. Tracy, R. E. Cardiac myocyte sizes in right compared with left ventricle during overweight and hypertension. J. Am. Soc. Hypertens. 8(7):457–463, 2014. https://doi.org/10.1016/j.jash.2014.05.004.

    Article  Google Scholar 

  50. Tseliou, E., G. De Couto, J. Terrovitis, B. Sun, L. Weixin, L. Marbán, et al. Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PLoS ONE 9(2):e88590, 2014. https://doi.org/10.1371/journal.pone.0088590.

    Article  Google Scholar 

  51. Weber, K. T., and J. Díez. Targeting the cardiac myofibroblast secretome to treat myocardial fibrosis in heart failure. Circulation 9(8):e003315, 2016. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003315.

    Article  Google Scholar 

  52. Yu, Y., G. Yin, S. Bao, and Z. Guo. Kinetic alterations of collagen and elastic fibres and their association with cardiac function in acute myocardial infarction. Mol. Med. Rep. 17(3):3519–3526, 2018. https://doi.org/10.3892/mmr.2017.8347.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical assistance received from Dr. Armando Varela for kindly assisting us with the bright field microscopy and Dr. David Roberson for his help with the SEM.

Author contributions

BR and BJ conceptualized the study and were responsible for the experimentation, data collection, curation and analysis. SAK helped in selected experiments, writing and editing of the manuscript. SCA and LJS performed the rheological analysis for this manuscript. MD helped with the cell culture experiments. SM and RC performed the Cell Force Estimation Analysis. AMR and CL performed the SHG experiments for this manuscript. All authors participated in the writing and editing of the manuscript.

Funding

The Joddar Lab (IMSTEL) acknowledges NIH BUILD Pilot 8UL1GM118970-02, the NSF PREM (DMR 1205302), the NSF-MRI Grant # DMR-1828268 and NIH 1SC2HL134642-01. CL acknowledges the NSF MRI Grant #DBI 1429708 and both CL and RC acknowledges the NSF-PREM program (#DMR-1827745).

Conflict of interest

The authors declare no conflicts of interest.

Consent for publication

All authors have consented to this manuscript and their role and order of authorship.

Statement of Human and Animal Rights

No human or animal experimentation was executed as a part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binata Joddar.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roman, B., Kumar, S.A., Allen, S.C. et al. A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes. Cardiovasc Eng Tech 12, 311–324 (2021). https://doi.org/10.1007/s13239-020-00514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00514-7

Keywords

Navigation