Skip to main content
Log in

Inverse Solution of the Fetal-Circulation Model Based on Ultrasound Doppler Measurements

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Fetal growth restriction (FGR) is one of the major contributors to adverse perinatal outcome. However, the diagnostic tools used for the assessment of fetal well-being are limited due to the great variability among fetuses. The purpose of this study was to estimate the dynamics of fetal circulation during the advanced stages of the gestational period. A methodology for estimating fetal hemodynamic parameters is presented. The method combines a mathematical model of the fetal circulation, optimization algorithm, and measurements of power-Doppler ultrasound. The model estimates fetal indices of the fetal circulation that are not accessible for direct measurement, aimed at the identification of the degree of circulatory compromise in fetuses diagnosed as FGR. The method was tested on a cohort of 20 normal and 22 growth-restricted fetuses. Model predictions indicated significant changes in the circulation of FGR fetuses compared to normal fetuses. Cardiac output was significantly lower in the FGR group compared to the control group (330 ± 52 mL min−1 kg−1 compared to 396 ± 52 mL min−1 kg−1, p < 0.001). Furthermore, placental blood flow was lower for the FGR group (145 ± 49 mL min−1 kg−1 compared to 181 ± 31 mL min−1 kg−1, p < 0.01). In the FGR fetuses with adverse outcome, both indices were reduced even further (297 ± 56 mL min−1 kg−1, p < 0.001 and 97 ± 46 mL min−1 kg−1, p < 0.001, respectively). In the adverse outcome group the model indicated also significant increase in cardiac output distribution towards the brain (9.6 ± 0.7%, compared to 8.0 ± 1.6%, p < 0.01) and an increase in the ratio of blood shunted by the ductus venosus (60.6 ± 17.7%, compared to 39.7 ± 14.8%, p < 0.01), indicating a severe brain sparing effect in these fetuses. In conclusion, patient-specific modeling may provide a reliable estimate of the important hemodynamic indices of the fetal circulation which may be clinically relevant for the management of FGR pregnancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Acharya, G., T. Wilsgaard, G. K. Berntsen, J. M. Maltau, and T. Kiserud. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. Am. J. Obstet. Gynecol. 192:937–944, 2005.

    Article  Google Scholar 

  2. Barnea, O. Mathematical analysis of coronary autoregulation and vascular reserve in closed-loop circulation. Comput. Biomed. Res. 27:263–275, 1994.

    Article  Google Scholar 

  3. Barnea, O., and N. Sheffer. A computer model for analysis of fluid resuscitation. Comput. Biol. Med. 23:443–454, 1993.

    Article  Google Scholar 

  4. Capper, W. L., J. G. Cowper, and L. J. Myers. A transfer function-based mathematical model of the fetal–placental circulation. Ultrasound Med. Biol. 28:1421–1431, 2002.

    Article  Google Scholar 

  5. Chang, K. C., H. M. Lo, and Y. Z. Tseng. Systolic elastance and resistance in the regulation of cardiac pumping function in early streptozotocin-diabetic rats. Exp. Biol. Med. (Maywood) 227:251–259, 2002.

    Google Scholar 

  6. Dawson, T. H. Modeling of vascular networks. J. Exp. Biol. 208:1687–1694, 2005.

    Article  Google Scholar 

  7. Ebbing, C., S. Rasmussen, and T. Kiserud. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet. Gynecol. 30:287–296, 2007.

    Article  Google Scholar 

  8. Gallivan, S., S. C. Robson, T. C. Chang, J. Vaughan, and J. A. D. Spencer. An investigation of fetal growth using serial ultrasound data. Ultrasound Obstet. Gynecol. 3:109–114, 1993.

    Article  Google Scholar 

  9. Goto, Y., B. K. Slinker, and M. M. LeWinter. Similar normalized E max and O2 consumption–pressure–volume area relation in rabbit and dog. Am. J. Physiol. 255:H366–H374, 1988.

    Google Scholar 

  10. Guettouche, A., J. C. Challier, Y. Ito, C. Papapanayotou, Y. Cherruault, and A. Azancot-Benisty. Mathematical modeling of the human fetal arterial blood circulation. Int. J. Biomed. Comput. 31:127–139, 1992.

    Article  Google Scholar 

  11. Hecher, K., S. Campbell, R. Snijders, and K. Nicolaides. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet. Gynecol. 4:381–390, 1994.

    Article  Google Scholar 

  12. Hosmer, D. W., and S. Lemeshow. Applied Logistic Regression. New York: Wiley, p. ix + 307, 1989.

  13. Kiserud, T., and G. Acharya. The fetal circulation. Prenat. Diagn. 24:1049–1059, 2004.

    Article  Google Scholar 

  14. Kiserud, T., C. Ebbing, J. Kessler, and S. Rasmussen. Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet. Gynecol. 28:126–136, 2006.

    Article  Google Scholar 

  15. Kleiner-Assaf, A., A. J. Jaffa, and D. Elad. Hemodynamic model for analysis of Doppler ultrasound indexes of umbilical blood flow. Am. J. Physiol. Heart Circ. Physiol. 276:H2204–H2214, 1999.

    Google Scholar 

  16. Luria, O., J. Bar, M. Kovo, G. Malinger, A. Golan, and O. Barnea. The role of blood flow distribution in the regulation of cerebral oxygen availability in fetal growth restriction. Med. Eng. Phys. 34:364–369, 2012.

    Article  Google Scholar 

  17. Luria, O., O. Barnea, J. Shalev, J. Barkat, M. Kovo, A. Golan, and J. Bar. Two-dimensional and three-dimensional Doppler assessment of fetal growth restriction with different severity and onset. Prenat. Diagn. 32:1174–1180, 2012.

    Article  Google Scholar 

  18. Menigault, E., M. Berson, P. Vieyres, B. Lepoivre, D. Pourcelot, and L. Pourcelot. Feto–maternal circulation: mathematical model and comparison with Doppler measurements. Eur. J. Ultrasound 7:129–143, 1998.

    Article  Google Scholar 

  19. Myers, L. J., and W. L. Capper. A transmission line model of the human foetal circulatory system. Med. Eng. Phys. 24:285–294, 2002.

    Article  Google Scholar 

  20. Nicolaides, K. H., W. H. Clewell, and C. H. Rodeck. Measurement of human fetoplacental blood volume in erythroblastosis fetalis. Am. J. Obstet. Gynecol. 157:50–53, 1987.

    Article  Google Scholar 

  21. Pennati, G., M. Bellotti, and R. Fumero. Mathematical modelling of the human foetal cardiovascular system based on Doppler ultrasound data. Med. Eng. Phys. 19:327–335, 1997.

    Article  Google Scholar 

  22. Pennati, G., and R. Fumero. Scaling approach to study the changes through the gestation of human fetal cardiac and circulatory behaviors. Ann. Biomed. Eng. 28:442–452, 2000.

    Article  Google Scholar 

  23. Suga, H., K. Sagawa, and A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.

    Article  Google Scholar 

  24. Surat, D. R., and S. L. Adamson. Downstream determinants of pulsatility of the mean velocity waveform in the umbilical artery as predicted by a computer model. Ultrasound Med. Biol. 22:707–717, 1996.

    Article  Google Scholar 

  25. Talbert, D. G., and P. Johnson. The pulmonary vein Doppler flow velocity waveform: feature analysis by comparison of in vivo pressures and flows with those in a computerized fetal physiological model. Ultrasound Obstet. Gynecol. 16:457–467, 2000.

    Article  Google Scholar 

  26. Thompson, R. S., and B. J. Trudinger. Doppler waveform pulsatility index and resistance, pressure and flow in the umbilical placental circulation: an investigation using a mathematical model. Ultrasound Med. Biol. 16:449–458, 1990.

    Article  Google Scholar 

  27. van den Wijngaard, J. P. H. M., A. Umur, M. G. Ross, and M. J. C. van Gemert. Modelling the influence of amnionicity on the severity of twin–twin transfusion syndrome in monochorionic twin pregnancies. Phys. Med. Biol. 49:N57–N64, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Barnea.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luria, O., Bar, J., Shalev, J. et al. Inverse Solution of the Fetal-Circulation Model Based on Ultrasound Doppler Measurements. Cardiovasc Eng Tech 5, 202–216 (2014). https://doi.org/10.1007/s13239-013-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0153-7

Keywords

Navigation