Skip to main content

Advertisement

Log in

Individual and combined effects of fluoride and arsenic on gut bacteria: a recent update

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Organisms are exposed to multiple toxicants in their surroundings in the increasingly contaminated complex environment. Such toxic exposures are observed to trigger complex biological responses that might or might not be identical to the responses elicited by individual exposures of the same toxicants. Two notable water contaminants, fluoride (F) and arsenic (As) are present worldwide and pose threat to organisms. These contaminants are consumed via contaminated water, drugs, toothpastes, cosmetics etc. Symbiotic microbiota dwelling in the gastrointestinal tract, are the key modulators of host health. Number of reports have concluded that F and As can alter the gut bacterial homeostasis, leading to the deterioration of host health. All the vital bodily systems including digestive, cardiovascular, nervous, reproductive and renal, are getting affected due to the alteration of gut bacteria. This scenario surely hints towards a complex association between toxicants, gut microbiota and host health. Taking into consideration, the present review intends to focus on individual and combined effects of F and As on the perturbation of gut bacteria of different organisms with special emphasis on the effect on human health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

As2O3 :

Arsenic trioxide

As:

Arsenic

c-AMP:

Cyclic-adenosine monophosphate

DMA:

Dimethyl arsinic acid

F:

Fluoride

GSH:

Glutathione

HF:

Hydrogen fluoride

MGBB:

Microbiota-gut-blood barrier

MMA:

Monomethyl arsonic acid

MVA:

Mevalonic acid

NaAsO2 :

Sodium arsenite

NaF:

Sodium fluoride

OTUs:

Operative taxonomical groups

SCFAs:

Short chain fatty acids

TNF-α:

Tumor necrosis factor-α

ZO:

Zonula occludens

References

  1. Alarcón-Herrera MT, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Reyes-Gomez VM, Nunez D, Martín-Dominguez IR, Sracek O. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. J Hazard Mater. 2013;262:960–9.

    Article  PubMed  Google Scholar 

  2. Baldelli V, Scaldaferri F, Putignani L, Del Chierico F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms. 2021;9(4):697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belotserkovsky I, Sansonetti PJ. Shigella and enteroinvasive Escherichia coli. Escherichia coli a Versat Pathog. 2018. https://doi.org/10.1007/82_2018_104.

    Article  Google Scholar 

  4. Bist P, Choudhary S. Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: a review. Biol Trace Elem Res. 2022;200(12):5328–50.

    Article  CAS  PubMed  Google Scholar 

  5. Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Sherchan SP. Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal. Heliyon. 2020. https://doi.org/10.1016/j.heliyon.2020.e03313.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brennan CA, Garrett WS. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019;17(3):156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DM, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of group A Streptococcus infection. Nat Rev Microbiol. 2023;9:1–7.

    Google Scholar 

  8. Büttner FM, Zoll S, Nega M, Götz F, Stehle T. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage. J Biol Chem. 2014;289(16):11083–94.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calatayud M, Barrios JA, Velez D, Devesa V. In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chem Res Toxicol. 2012;25(2):446–53.

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK. Arsenic groundwater contamination in middle Ganga plain, Bihar, India: a future danger? Environ Health Perspect. 2003;111(9):1194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S. Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol. 2011;85:327–35.

    Article  CAS  PubMed  Google Scholar 

  12. Chen F, Luo Y, Li C, Wang J, Chen L, Zhong X, Guo L. Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. Ecotoxicol Environ Safety. 2021;227:112934.

    Article  CAS  PubMed  Google Scholar 

  13. Chen G, Hu P, Xu Z, Peng C, Wang Y, Wan X, Cai H. The beneficial or detrimental fluoride to gut microbiota depends on its dosages. Ecotoxicol Environ Saf. 2021;209:111732.

    Article  CAS  PubMed  Google Scholar 

  14. Chi L, Bian X, Gao B, Ru H, Tu P, Lu K. Sex-specific effects of arsenic exposure on the trajectory and function of the gut microbiome. Chem Res Toxicol. 2016;29:949–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choiniere J, Wang L. Exposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma. Acta Pharm Sin B. 2016;6(5):426–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Czarnowski W, Wrześniowska K, Krechniak J. Fluoride in drinking water and human urine in Northern and Central Poland. Sci Total Environ. 1996;191(1–2):177–84.

    Article  CAS  PubMed  Google Scholar 

  17. Das N, Das A, Sarma KP, Kumar M. Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere. 2018;194:755–72.

    Article  CAS  PubMed  Google Scholar 

  18. De A, Mridha D, Joardar M, Das A, Chowdhury NR, Roychowdhury T. Distribution, prevalence and health risk assessment of fluoride and arsenic in groundwater from lower Gangetic plain in West Bengal India. Groundw Sustain Dev. 2022;16:100722.

    Article  Google Scholar 

  19. Dheer R, Patterson J, Dudash M, Stachler EN, Bibby KJ, Stolz DB, Shiva S, Wang Z, Hazen SL, Barchowsky A, Stolz JF. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharm. 2015;289(3):397–408.

    Article  CAS  Google Scholar 

  20. Ding YH, Qian LY, Pang J, Lin JY, Xu Q, Wang LH, Huang DS, Zou H. The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy. Oncotarget. 2017;8(35):59915.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dionizio A, Uyghurturk DA, Melo CG, Sabino-Arias IT, Araujo TT, Ventura TM, Perles JV, Zanoni JN, Den Besten P, Buzalaf MA. Intestinal changes associated with fluoride exposure in rats: Integrative morphological, proteomic and microbiome analyses. Chemosphere. 2021;1(273):129607.

    Article  Google Scholar 

  22. Dong X, Shulzhenko N, Lemaitre J, Greer RL, Peremyslova K, Quamruzzaman Q, Rahman M, Hasan OS, Joya SA, Golam M, et al. Arsenic exposure and intestinal microbiota in children from Sirajdikhan. Bangladesh PLoS One. 2017;12:e0188487.

    Article  PubMed  Google Scholar 

  23. Dutta J. Fluoride, arsenic and other heavy metals contamination of drinking water in the tea garden belt of Sonitpur district, Assam. India Int J ChemTech Res. 2013;5(5):2614–22.

    CAS  Google Scholar 

  24. Fan P, Liu P, Song P, Chen X, Ma X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep. 2017;7(1):43412.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Farooqi A, Masuda H, Firdous N. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut. 2007;145(3):839–49.

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira-Halder CV, de Sousa Faria AV, Andrade SS. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol. 2017;31(6):643–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fu R, Niu R, Li R, Yue B, Zhang X, Cao Q, Wang J, Sun Z. Fluoride-induced alteration in the diversity and composition of bacterial microbiota in mice colon. Biol Trace Element Res. 2020;196(2):537–44.

    Article  CAS  Google Scholar 

  28. Gerritsen J, Hornung B, Renckens B, van Hijum SA, Dos Santos VA, Rijkers GT, Schaap PJ, de Vos WM, Smidt H. Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ. 2017;5:e3698.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghosh S, Mukherjee M, Roychowdhury T. Bacterial bio-mobilization and-sequestration of arsenic in contaminated paddy fields of West Bengal, India. Biocatal Agric Biotechnol. 2022;1(43):102420.

    Article  Google Scholar 

  30. Government of India, “Bhu-Jal News”, Quarterly Journal Volume No.24, Number 1, Jan-March 2009

  31. Gu X, Sim JX, Lee WL, Cui L, Chan YF, Chang ED, Teh YE, Zhang AN, Armas F, Chandra F, Chen H. Gut Ruminococcaceae levels at baseline correlate with risk of antibiotic-associated diarrhea. Iscience. 2022;25(1):103644.

    Article  CAS  PubMed  Google Scholar 

  32. Guo H, Zhang Y, Xing L, Jia Y. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin. Inner Mongolia Appl Geochem. 2012;27(11):2187–96.

    Article  CAS  Google Scholar 

  33. Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Animal Sci Biotechnol. 2020;11(1):1.

    Article  Google Scholar 

  34. Hall LL, George SE, Kohan MJ, Styblo M, Thomas DJ. In vitro methylation of inorganic arsenic in mouse intestinal cecum. Toxicol Appl Pharmacol. 1997;147(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hall MN, Gamble MV. Nutritional manipulation of one-carbon metabolism: effects on arsenic methylation and toxicity. J Toxicol. 2012. https://doi.org/10.1155/2012/595307.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoen AG, Madan JC, Li Z, Coker M, Lundgren SN, Morrison HG, Palys T, Jackson BP, Sogin ML, Cottingham KL, et al. Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population. Sci Rep. 2018;8:12627.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hosokawa S, Kuroda K, Narihiro T, Aoi Y, Ozaki N, Ohashi A, Kindaichi T. Cometabolism of the superphylum Patescibacteria with anammox bacteria in a long-term freshwater anammox column reactor. Water. 2021;13(2):208.

    Article  CAS  Google Scholar 

  38. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011;123(2):305–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jha SK, Singh RK, Damodaran T, Mishra VK, Sharma DK, Rai D. Fluoride in groundwater: toxicological exposure and remedies. J Toxicol Environ Health, Part B. 2013;16(1):52–66.

    Article  CAS  Google Scholar 

  40. Joardar M, Das A, Chowdhury NR, Mridha D, Das J, De A, Majumder S, Majumdar KK, Roychowdhury T. Impact of treated drinking water on arsenicosis patients with continuous consumption of contaminated dietary foodstuffs: a longitudinal health effect study from arsenic prone area, West Bengal India. Groundw Sustain Dev. 2022;18:100786.

    Article  Google Scholar 

  41. Kabir H, Gupta AK, Tripathy S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit Rev Environ Sci Technol. 2020;50(11):1116–93.

    Article  CAS  Google Scholar 

  42. Kadowaki R, Tanno H, Maeno S, Endo A. Spore-forming properties and enhanced oxygen tolerance of butyrate-producing Anaerostipes spp. Anaerobe. 2023;8:102752.

    Article  Google Scholar 

  43. Kim SH, Kim K, Ko KS, Kim Y, Lee KS. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere. 2012;87(8):851–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol. 2001;172(3):249–61.

    Article  CAS  PubMed  Google Scholar 

  45. Komuroglu AU, Seckin H, Ertaş M, Meydan I. Metagenomic Analysis of intestinal microbiota in florated rats. Biol Trace Element Res. 2022;200(7):3275–83.

    Article  CAS  Google Scholar 

  46. Kumar M, Das A, Das N, Goswami R, Singh UK. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere. 2016;150:227–38.

    Article  CAS  PubMed  Google Scholar 

  47. La Reau AJ, Suen G. The Ruminococci: key symbionts of the gut ecosystem. J Microbiol. 2018;56:199–208.

    Article  PubMed  Google Scholar 

  48. Lee KC, Webb RI, Janssen PH, Sangwan P, Romeo T, Staley JT, Fuerst JA. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol. 2009;9:1.

    Article  Google Scholar 

  49. Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, Khodadadi E, Tanomand A, Sheykhsaran E, Yousefi B, Kafil HS. The critical role of Faecalibacterium prausnitzii in human health: an overview. Microb Pathog. 2020;1(149):104344.

    Article  Google Scholar 

  50. Li A, Wang Y, He Y, Liu B, Iqbal M, Mehmood K, Jamil T, Chang YF, Hu L, Li Y, Guo J. Environmental fluoride exposure disrupts the intestinal structure and gut microbial composition in ducks. Chemosphere. 2021;1(277):130222.

    Article  Google Scholar 

  51. Li G, Zheng X, Zhu Y, Long Y, Xia X. In-depth insights into the disruption of the microbiota-gut-blood barrier of model organism (Bombyx mori) by fluoride. Sci Total Environ. 2022;10(838):156220.

    Article  Google Scholar 

  52. Liu J, Wang HW, Lin L, Miao CY, Zhang Y, Zhou BH. Intestinal barrier damage involved in intestinal microflora changes in fluoride-induced mice. Chemosphere. 2019;234:409–18.

    Article  CAS  PubMed  Google Scholar 

  53. Liu P, Li R, Tian X, Zhao Y, Li M, Wang M, Ying X, Yuan J, Xie J, Yan X, Lyu Y. Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats. Ecotoxicol Environ Safe. 2021;222:112506.

    Article  CAS  Google Scholar 

  54. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu K, Cable PH, Abo RP, Ru H, Graffam ME, Schlieper KA, Parry NM, Levine S, Bodnar WM, Wishnok JS, Styblo M. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation. Chem Res Toxicol. 2013;26(12):1893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu K, Mahbub R, Fox JG. Xenobiotics: interaction with the intestinal microflora. ILAR J. 2015;56(2):218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo Q, Cui H, Peng X, Fang J, Zuo Z, Deng J, Liu J, Deng Y. Dietary high fluorine alters intestinal microbiota in broiler chickens. Biol Trace Elem Res. 2016;173:483–91.

    Article  CAS  PubMed  Google Scholar 

  58. Mahlangu O, Mamba B, Momba M. Efficiency of silver impregnated porous pot (SIPP) filters for production of clean potable water. Int J Environ Res Public Health. 2012;9(9):3014–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miao L, Gong Y, Li H, Xie C, Xu Q, Dong X, Elwan HA, Zou X. Alterations in cecal microbiota and intestinal barrier function of laying hens fed on fluoride supplemented diets. Ecotoxicol Environ Safe. 2020;193:110372.

    Article  CAS  Google Scholar 

  60. Mondal P, Shaw P, Bandyopadhyay A, Bhowmik AD, Chakraborty A, Sudarshan M, Chattopadhyay A. Mixture effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) liver: expression pattern of Nrf2 and related xenobiotic metabolizing enzymes. Aquat Toxicol. 2019;1(213):105219.

    Article  Google Scholar 

  61. Mondal P, Shaw P, Bhowmik AD, Bandyopadhyay A, Sudarshan M, Chakraborty A, Chattopadhyay A. Combined effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) brain: alterations in stress marker and apoptotic gene expression. Chemosphere. 2021;1(269):128678.

    Article  Google Scholar 

  62. Moran GP, Zgaga L, Daly B, Harding M, Montgomery T. Does fluoride exposure impact on the human microbiome? Toxicol Lett. 2023. https://doi.org/10.1016/j.toxlet.2023.03.001.

    Article  PubMed  Google Scholar 

  63. Narsimha A, Sudarshan V. Contamination of fluoride in groundwater and its effect on human health: a case study in hard rock aquifers of Siddipet, Telangana State, India. Appl Water Sci. 2017;7:2501–12.

    Article  CAS  Google Scholar 

  64. Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ Health Perspect. 2006;114(5):641–8.

    Article  CAS  PubMed  Google Scholar 

  65. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.

    Article  CAS  PubMed  Google Scholar 

  66. Paul DS, Harmon AW, Devesa V, Thomas DJ, Stýblo M. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect. 2007;115(5):734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Purohit A, Alam MJ, Kandiyal B, Das B, Banerjee SK. Gut microbiome and non-alcoholic fatty liver disease. Prog Mol Biol Transl Sci. 2022;191(1):187–206.

    Article  PubMed  Google Scholar 

  68. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceed Natl Acad Sci. 2006;103(7):2075–80.

    Article  CAS  Google Scholar 

  69. Qiu Y, Chen X, Yan X, Wang J, Yu G, Ma W, Xiao B, Quinones S, Tian X, Ren X. Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride. Environ Int. 2020;1(140):105763.

    Article  Google Scholar 

  70. Reddy PS, Rani GP, Sainath SB, Meena R, Supriya CH. Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elements Med Biol. 2011;25(4):247–53.

    Article  CAS  Google Scholar 

  71. Ribeiro DA, Cardoso CM, Yujra VQ, Viana MD, Aguiar O, Pisani LP, Oshima CT. Fluoride induces apoptosis in mammalian cells: in vitro and in vivo studies. Anticancer Res. 2017;37(9):4767–77.

    CAS  PubMed  Google Scholar 

  72. Richardson JB, Dancy BC, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, Ackermann G, Humphrey G, Palacios G, Knight R, Lewis JA. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Robertson FN. Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health. 1989;11:171–85.

    Article  CAS  PubMed  Google Scholar 

  74. Seltenrich N. Arsenic and diabetes: assessing risk at low-to-moderate exposures. Environ Health Perspect. 2018;126(4):044002.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shahi SK, Freedman SN, Mangalam AK. Gut microbiome in multiple sclerosis: the players involved and the roles they play. Gut Microbes. 2017;8(6):607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shao M, Zhu Y. Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area. Scientific Rep. 2020;10(1):4453.

    Article  CAS  Google Scholar 

  77. Shinohara T, Okamoto K, Koyano S, Otani A, Yamashita M, Wakimoto Y, Jubishi D, Hashimoto H, Ikeda M, Harada S, Okugawa S. Plesiomonas shigelloides septic shock following ingestion of Dojo nabe (loach hotpot). InOpen Forum Infectious Diseases 2021 Aug 1 (Vol. 8, No. 8, p. ofab401). US: Oxford University Press. https://doi.org/10.1093/ofid/ofab401.

  78. Şi̇reli̇ M, Bülbül A. The effect of acute fluoride poisoning on nitric oxide and methemoglobin formation in the guinea pig. Turkish J Vet Anim Sci. 2004;28(3):591–5.

    Google Scholar 

  79. Smedley PL. Arsenic in rural groundwater in Ghana: part special issue: hydrogeochemical studies in sub-Saharan Africa. J Afr Earth Sc. 1996;22(4):459–70.

    Article  CAS  Google Scholar 

  80. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  CAS  PubMed  Google Scholar 

  81. Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun N, Ni X, Wang H, Xin J, Zhao Y, Pan K, Jing B, Zeng D. Probiotic Lactobacillus johnsonii BS15 prevents memory dysfunction induced by chronic high-fluorine intake through modulating intestinal environment and improving gut development. Probiotics Antimicrob Proteins. 2020;12:1420–38.

    Article  CAS  PubMed  Google Scholar 

  83. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, Z. Li J, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5(1):3114.

    Article  PubMed  Google Scholar 

  84. Tian X, Yan X, Chen X, Liu P, Sun Z, Niu R. Identifying serum metabolites and gut bacterial species associated with nephrotoxicity caused by arsenic and fluoride exposure. Biol Trace Elem Res. 2023;24:1–2.

    Google Scholar 

  85. Toprak NU, Duman N, Sacak BÜ, Ozkan MC, Sayın E, Mulazimoglu L, Soyletir G. Alloprevotella rava isolated from a mixed infection of an elderly patient with chronic mandibular osteomyelitis mimicking oral squamous cell carcinoma. New Microb New Infect. 2021;42:100880.

    Article  Google Scholar 

  86. Tseng CH. Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J Environ Sci Health C. 2007;25(1):1–22.

    Article  CAS  Google Scholar 

  87. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut lachnospiraceae. Microorganisms. 2020;8(4):573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vitellio P, Celano G, Bonfrate L, Gobbetti M, Portincasa P, De Angelis M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: a randomised, double-blind, cross-over study. Nutrients. 2019;11(4):886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang HT, Ma L, Zhu D, Ding J, Li G, Jin BJ, Shao YH, Zhang WX, Song MY, Fu SL. Responses of earthworm metaphire vulgaris gut microbiota to arsenic and nanoplastics contamination. Sci Total Environ. 2022;1(806):150279.

    Article  Google Scholar 

  90. Wang HT, Zhu D, Li G, Zheng F, Ding J, O’Connor PJ, Zhu YG, Xue XM. Effects of arsenic on gut microbiota and its biotransformation genes in earthworm Metaphire sieboldi. Environ Sci Technol. 2019;53(7):3841–9.

    Article  CAS  PubMed  Google Scholar 

  91. Wang HW, Miao CY, Liu J, Zhang Y, Zhu SQ, Zhou BH. Fluoride-induced rectal barrier damage and microflora disorder in mice. Environ Sci Pollut Res. 2020;27:7596–607.

    Article  CAS  Google Scholar 

  92. Wang K, Wu W, Wang Q, Yang L, Bian X, Jiang X, Lv L, Yan R, Xia J, Han S, Li L. The negative effect of Akkermansia muciniphila-mediated post-antibiotic reconstitution of the gut microbiota on the development of colitis-associated colorectal cancer in mice. Front Microbiol. 2022;13:932047.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP, Zhang XD, Han LL, Qiao XY, Wu ZM, Wang ZQ. Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi province. China Environ Health Perspect. 2007;115(4):643–7.

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Shvartsev SL, Su C. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, Northern China. Appl Geochem. 2009;24(4):641–9.

    Article  CAS  Google Scholar 

  95. Wang YF, Qiao M, Wang HT, Zhu D. Species-specific effects of arsenic on the soil collembolan gut microbiota. Ecotoxicol Environ Saf. 2019;15(183):109538.

    Article  Google Scholar 

  96. Wei B, Yu J, Kong C, Li H, Yang L, Xia Y, Wu K. Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions. Environ Sci Pollut Res. 2018. https://doi.org/10.1007/s11356-018-2512-2.

    Article  Google Scholar 

  97. Whitford GM. Intake and metabolism of fluoride. Adv Dental Res. 1994;8(1):5–14.

    Article  CAS  Google Scholar 

  98. WHO, Environmental Health Criteria-224. Arsenic and arsenic compounds, second ed., World Health Organization, Geneva, 2003.

  99. WHO. Fluoride in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. 2004

  100. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017;14(4):3122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu F, Yang L, Islam MT, Jasmine F, Kibriya MG, Nahar J, Barmon B, Parvez F, Sarwar G, Ahmed A, Eunus M. The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environ Int. 2019;1(123):104–13.

    Article  Google Scholar 

  102. Wu H, Wu R, Chen X, Geng H, Hu Y, Gao L, Fu J, Pi J, Xu Y. Developmental arsenic exposure induces dysbiosis of gut microbiota and disruption of plasma metabolites in mice. Toxicol Appl Pharmacol. 2022;1(450):116174.

    Article  Google Scholar 

  103. Wu S, Wang Y, Iqbal M, Mehmood K, Li Y, Tang Z, Zhang H. Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity–a review. Environ Pollut. 2022;1(304):119241.

    Article  Google Scholar 

  104. Xin J, Sun N, Wang H, Ma H, Wu B, Li L, Wang Y, Huang H, Zeng D, Bai X, Chen A. Preventive effects of Lactobacillus johnsonii on the renal injury of mice induced by high fluoride exposure: Insights from colonic microbiota and co-occurrence network analysis. Ecotoxicol Environ Saf. 2021;25(228):113006.

    Article  Google Scholar 

  105. Xin J, Wang H, Sun N, Bughio S, Zeng D, Li L, Wang Y, Khalique A, Zeng Y, Pan K, Jing B. Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice. Ecotoxicol Environ Saf. 2021;215:112108.

    Article  CAS  PubMed  Google Scholar 

  106. Yadav M, Singh G, Jadeja RN. Fluoride contamination in groundwater, impacts, and their potential remediation techniques. Groundw Geochem: Pollut Remediat Methods. 2021;25:22–41.

    Article  Google Scholar 

  107. Yan X, Chen X, Tian X, Qiu Y, Wang J, Yu G, Dong N, Feng J, Xie J, Nalesnik M, Niu R. Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats. Sci Total Environ. 2021;1(767):144924.

    Article  Google Scholar 

  108. Yang J, Li Y, Wen Z, Liu W, Meng L, Huang H. Oscillospira-a candidate for the next-generation probiotics. Gut Microbes. 2021;13(1):1987783.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yasuda K, Hsu T, Gallini CA, Mclver LJ, Schwager E, Shi A, DuLong CR, Schwager RN, Abu-Ali GS, Franzosa EA, Garrett WS. Fluoride depletes acidogenic taxa in oral but not gut microbial communities in mice. Msystems. 2017;2(4):e00047-e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yeoh YK, Sun Y, Ip LY, Wang L, Chan FK, Miao Y, Ng SC. Prevotella species in the human gut is primarily comprised of Prevotella copri, Prevotella stercorea and related lineages. Sci Rep. 2022;12(1):9055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Younan S, Sakita GZ, Albuquerque TR, Keller R, Bremer-Neto H. Chromium (VI) bioremediation by probiotics. J Sci Food Agric. 2016;96(12):3977–82.

    Article  CAS  PubMed  Google Scholar 

  112. Yu H, Zhang Y, Zhang P, Shang X, Lu Y, Fu Y, Li Y. Effects of fluorine on intestinal structural integrity and microbiota composition of common carp. Biol Trace Elem Res. 2021;199:3489–96.

    Article  CAS  PubMed  Google Scholar 

  113. Zeng Q, Xu Y, Yu X, Yang J, Hong F, Zhang A. Silencing GSK3β instead of DKK1 can inhibit osteogenic differentiation caused by co-exposure to fluoride and arsenic. Bone. 2019;1(123):196–203.

    Article  Google Scholar 

  114. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–41.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16(4):7493–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhong G, Wan F, Lan J, Jiang X, Wu S, Pan J, Tang Z, Hu L. Arsenic exposure induces intestinal barrier damage and consequent activation of gut-liver axis leading to inflammation and pyroptosis of liver in ducks. Sci Total Environ. 2021;20(788):147780.

    Article  Google Scholar 

  117. Zhong N, Ma Y, Meng X, Sowanou A, Wu L, Huang W, Gao Y, Pei J. Effect of fluoride in drinking water on fecal microbial community in rats. Biol Trace Elem Res. 2022;1:1–9.

    Google Scholar 

  118. Zhu SQ, Liu J, Han B, Zhao WP, Zhou BH, Zhao J, Wang HW. Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon. Environ Pollut. 2022;1(292):118381.

    Article  Google Scholar 

  119. Zhu YP, Xi SH, Li MY, Ding TT, Liu N, Cao FY, Zeng Y, Liu XJ, Tong JW, Jiang SF. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats. Neurotoxicology. 2017;1(59):56–64.

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Department of Zoology, Visva-Bharati for providing infrastructural support. Miss. Sunanda Mukherjee expresses her gratitude to DST-INSPIRE (No.DST/INSPIRE Fellowship/2019/IF190941) fellowship for the financial assistance. Miss Olivia Sarkar is thankful to DST-INSPIRE (No. DST/INSPIRE Fellowship/2021/IF210118) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.M. wrote the manuscript and designed the diagram. O.S. checked and revised the manuscript. A.C. provided suggestions and revised the manuscript for final submission.

Corresponding author

Correspondence to Ansuman Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this review.

Additional information

Corresponding Editor: Umesh C. Lavania; Reviewers: Pallab Shaw, Debasish Bandyopadhyay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Sarkar, O. & Chattopadhyay, A. Individual and combined effects of fluoride and arsenic on gut bacteria: a recent update. Nucleus (2023). https://doi.org/10.1007/s13237-023-00460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-023-00460-4

Keywords

Navigation