Skip to main content

Advertisement

Log in

Bacterial epigenetics opens door to novel frontier in Infection biology

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Bacteria, like eukaryotes, use post-replicative DNA methylation to regulate the epigenetic regulation of DNA–protein interactions. In bacteria, DNA methyltransferases (Mtases) are common, and the majority of them are part of restriction-modification systems. Environmental factors influence DNA methylation patterns by altering regulatory protein binding. As an epigenetic cue, bacteria use DNA adenine methylation rather than DNA cytosine methylation. The virulence of various human pathogens is influenced by DNA adenine methylation. Methylome research has contributed to the discovery of a wide range of Mtases and their unique target sequences. The mRNA alteration via methylation and capping contributes to bacterial epigenetics alongside DNA modifications. Research on phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens have revealed global variations in methylation in regulating the expression of multiple genes. Bacteria can also influence the chromatin structure and transcriptional program of host cells by influencing various epigenetic factors, as per recent findings. Bacterial infection is increasingly being shown to play a role in modulating the epigenetic information of host cells through a variety of mechanisms. Further challenging realm is to uncover the function of chromatin modifications and their regulators in the physiopathology of infectious diseases. This will open new possibilities for future study in the field of bacterial pathogenesis and chromatin-based defense gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA. 1985;82(17):5724–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albu RF, Jurkowski TP, Jeltsch A. The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner. Nucleic Acids Res. 2012;40:1708–16.

    Article  CAS  PubMed  Google Scholar 

  3. Anton BP, Mongodin EF, Agrawal S, Fomenkov A, Byrd D, et al. Complete genome sequence of ER2796, a DNA methyltransferase-deficient strain of Escherichia coli K-12. PLoS ONE. 2015;10:e0127446.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Augsburger F, Filippova A, Jaquet V. Methods for detection of NOX-Derived superoxide radical anion and hydrogen peroxide in cells. Methods Mol Biol. 2019;1982:233–41.

    Article  CAS  PubMed  Google Scholar 

  5. Barel I, Naughton B, Reich NO, Brown FLH. Specificity versus processivity in the sequential modification of DNA: A study of DNA adenine methyltransferase. J Phys Chem B. 2018;122:1112–20.

    Article  CAS  PubMed  Google Scholar 

  6. Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun. 2015;6:7438.

    Article  CAS  PubMed  Google Scholar 

  7. Bierne H, Hamon M, Cossart. Epigenetics and bacterial infections. Cold Spring Harb Perspect Med. 2012;2:a010272.

  8. Bierne H, Hamon M. Targeting host epigenetic machinery: The Listeria paradigm. Cellular Microbiol. 2020;22:e13169.

    Article  CAS  Google Scholar 

  9. Bierne H. Cross talk between bacteria and the host epigenetic machinery. In: Doerfler W, Casadesús J, editors. Epigenetics of Infectious diseases. Switzerland: Epigenetics and Human Health. Springer International Publishing; Cham; 2017. p. 113–58.

    Chapter  Google Scholar 

  10. Blomfield IC. The regulation of pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol. 2001;45:1–49.

    Article  CAS  PubMed  Google Scholar 

  11. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, et al. The epigenomic landscape of prokaryotes. PLOS Genet. 2016;12:e1005854.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blyn LB, Braaten BA, White-Ziegler CA, Rolfson DH, Low DA. Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J. 1989;8:613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bobetsis YA, Barros SP, Lin DM, Weidman JR, Dolinoy DC, et al. Bacterial infection promotes DNA hypermethylation. J Dent Res. 2007;86:169–74.

    Article  CAS  PubMed  Google Scholar 

  14. Bomberger JM, MacEachran DP, Coutermarsh BA, et al. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. Ausubel FM, editor. PLoS Pathog. 2009;5(4):e1000382.

  15. Braaten BA, Nou X, Kaltenbach LS, Low DA. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell.1994;76(3), 577–88.

  16. Brezellec P, Hoebeke M, Hiet MS, Pasek S, Ferat JL. DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance. Bioinformatics. 2006;22:1935–41.

    Article  CAS  PubMed  Google Scholar 

  17. Broadbent SE, Balbontin R, Casadesus J, et al. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J Bacteriol. 2007;189:4325–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broadbent SE, Davies MR, van der Woude MW. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol. 2010;77(2):337–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brunet YR, Bernard CS, Gavioli M, Lloubès R, Cascales E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 2011;7(7):e1002205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calmann MA, Marinus MG. Regulated expression of the Escherichia coli dam gene. J Bacteriol. 2003;185(16):5012–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao B, Chen C, DeMott MS, Cheng Q, Clark TA, et al. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat Commun. 2014;5:3951.

    Article  CAS  PubMed  Google Scholar 

  22. Cao B, Cheng Q, Gu C, Yao F, DeMott MS, et al. Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella. Mol Microbiol. 2014;93:776–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carson WF, Cavassani KA, Dou Y, Kunkel SL. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics. 2011;6(3):273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70(3):830–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chao MC, Zhu S, Kimura S, Davis BM, Schadt EE, et al. A cytosine methytransferase modulates the cell envelope stress response in the cholera pathogen. PLOS Genet. 2015;11(11):e1005666.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chauhan K, Kalam H, Dutt R, Kumar D. RNA splicing: A new paradigm in host-pathogen interactions. J Mol Biol. 2019;431:1565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen C, Wang L, Chen S, Wu X, Gu M, et al. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc Natl Acad Sci USA. 2017;114:4501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng Q, Cao B, Yao F, Li J, Deng Z, et al. Regulation of DNA phosphorothioate modifications by the transcriptional regulator DptB in Salmonella. Mol Microbiol. 2015;97:1186–94.

    Article  CAS  PubMed  Google Scholar 

  29. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics. 2011;11(16):3424–9.

    Article  CAS  PubMed  Google Scholar 

  30. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–70.

    Article  CAS  PubMed  Google Scholar 

  31. Collier J. Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol. 2009;12(6):722–9.

    Article  CAS  PubMed  Google Scholar 

  32. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6:254ra126.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coyne MJ, Chatzidaki-Livanis M, Paoletti LC, Comstock LE. Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis. Proc Natl Acad Sci USA. 2008;105(35):13099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crimi E, Benincasa G, Cirri S, Mutesi R, Faenza M, et al. Clinical epigenetics and multidrug-resistant bacterial infections: host remodelling in critical illness. Epigenetics. 2020;15(10):1021–34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dalia AB, Lazinski DW, Camilli A. Characterization of undermethylated sites in Vibrio cholerae. J Bacteriol. 2013;195:2389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol. 2010;6:851–62.

    Article  CAS  PubMed  Google Scholar 

  37. Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol. 2006;61:564–72.

    Article  CAS  PubMed  Google Scholar 

  38. Eisenstein BI. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science. 1981;214:337–9.

    Article  CAS  PubMed  Google Scholar 

  39. Fioravanti A, Fumeaux C, Mohapatra SS, et al. DNA binding of the cell cycle transcriptional regulator GcrA depends on N6- adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLoS Genet. 2013;9:e1003541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fischer N. Infection-induced epigenetic changes and their impact on the pathogenesis of diseases. Semin Immunopathol. 2020;42(2):127–30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci. 2020;21(13):4573.

    Article  CAS  PubMed Central  Google Scholar 

  42. Gan R, Wu X, He W, Liu Z, Wu S, et al. DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks. Sci Rep. 2014;4:6642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garc´ıa-Del Portillo F, Pucciarelli MG, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. P Natl Acad Sci USA 1999;96:11578–83.

  44. Ge J, Xu H, Li T, Zhou Y, Zhang Z, et al. Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci USA. 2009;106:3725–30.

    Article  Google Scholar 

  45. Gonzalez D, Collier J. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol. 2013;88:203–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goody PR, Heller K, Oesterlin LK, Müller MP, Itzen A, et al. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 2012;31:1774–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hagberg L, Hull R, Hull S, Falkow S, Freter R, et al. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect Immun. 1983;40(1):265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hale WB, van der Woude MW, Braaten BA, Low DA. Regulation of uropathogenic Escherichia coli adhesin expression by DNA methylation. Mol Genet Metab. 1998;65(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  49. He X, Ou HY, Yu Q, Zhou X, Wu J, et al. Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol. 2007;65:1034–48.

    Article  CAS  PubMed  Google Scholar 

  50. Heithoff DM, Sinsheimer RL, Low DA, et al. An essential role for DNA adenine methylation in bacterial virulence. Science. 1999;284:967–70.

    Article  CAS  PubMed  Google Scholar 

  51. Henderson IR, Owen P, Nataro JP. Molecular switches—the ON and OFF of bacterial phase variation. Mol Microbiol. 1999;33:919–32.

    Article  CAS  PubMed  Google Scholar 

  52. Herbert, O'Keeffe TA, Purdy D, Elmore M, Minton NP. Gene transfer into Clostridium difficile CD630 and characterisation of its methylase genes. FEMS Microbiol Lett 2015;229: 103–10

  53. Herman GE, Modrich P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J Biol Chem. 1982;257(5):2605–12

  54. Hervet E, Charpentier X, Vianney A, Lazzaroni JC, Gilbert C, et al. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun. 2011;79:1936–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Holland C, Schmid M, Zimny-Arndt U, Rohloff J, Stein R, et al. Quantitative phosphoproteomics reveals link between Helicobacter pylori infection and RNA splicing modulation in host cells. Proteomics. 2011;11:2798–811.

    Article  CAS  PubMed  Google Scholar 

  56. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    Article  PubMed  Google Scholar 

  57. Horton JR, Liebert K, Hattman S, Jeltsch A, Cheng X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell. 2005;121:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Horton JR, LiebertK, Bekes M, Jeltsch A,Cheng,X. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J Mol Biol 2006;358, 559–570.

  59. Horton JR, Woodcock CB, Opot SB, Reich NO, Zhang X, et al. The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nat Commun. 2019;10:4600.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Imai K, Inoue H, Tamura M, Cueno ME, Takeichi O, et al. The periodontal pathogen Porphyromonas gingivalis induces the Epstein-Barr virus lytic switch transactivator ZEBRA by histone modification. Biochimie. 2011;94:839–46.

    Article  PubMed  Google Scholar 

  61. Imai K, Ochiai K, Okamoto T. Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification. J Immunol. 2009;182:3688–95.

    Article  CAS  PubMed  Google Scholar 

  62. Jeltsch A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modifi cation systems? Gene. 2003;317(1–2):13–6.

    Article  CAS  PubMed  Google Scholar 

  63. Jen FEC, Seib KL, Jennings MP. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob Agents Chemother. 2014;58:4219–21.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun. 2012;3:886.

    Article  PubMed  Google Scholar 

  65. Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007;6(6):832–9.

    Article  CAS  PubMed  Google Scholar 

  66. Khosla S, Sharma G, Yaseen I. Learning epigenetic regulation from mycobacteria. Microb Cell. 2016;3:92–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim JW, Dutta V, Elhanafi D, Lee S, Osborne JA, et al. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol. 2012;78:1995–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kita K, Tsuda J, Kato T, Okamoto K, Yanase H, et al. Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA. J Bacteriol. 1999;181(21):6822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kobayashi I, Nobusato A, Kobayashi-Takahashi N, Uchiyama I. Shaping the genome–restriction-modification systems as mobile genetic elements. Curr Opin Genet Dev. 1999;9(6):649–56.

    Article  CAS  PubMed  Google Scholar 

  70. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, et al. A novel mechanism of host-pathogen interaction through srna in bacterial outer membrane vesicles. Whiteley M, editor. PLOS Pathog. 2016;12(6):e1005672.

  71. Kontizas E, Tastsoglou S, Karamitros T, Karayiannis Y, Kollia P, et al. Impact of Helicobacter pylori Infection and Its Major Virulence Factor CagA on DNA Damage Repair. Microorganisms. 2007;2020:8.

    Google Scholar 

  72. Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, et al. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 2014;42:2415–32.

    Article  CAS  PubMed  Google Scholar 

  73. Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature. 2001;414(6863):555–8.

    Article  CAS  PubMed  Google Scholar 

  74. Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol. 2008;67:1307–19.

    Article  CAS  PubMed  Google Scholar 

  75. Kumar S, et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kurdyukov, S. and Bullock, M. (2016) 'DNA Methylation Analysis: Choosing the Right Method', Biology (Basel), 5(1).

  77. Kyung Lee M, Armstrong DA, Hazlett HF, Dessaint JA, Mellinger DL, et al. Exposure to extracellular vesicles from Pseudomonas aeruginosa result in loss of DNA methylation at enhancer and DNase hypersensitive site regions in lung macrophages. Epigenetics.2020;1–14.

  78. Le T, Kim KP, Fan G, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem. 2011;412(2):203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee M K, Armstrong D A, Hazlett H F, Dessaint J A, Mellinger D L, et al. Exposure to extracellular vesicles from Pseudomonas aeruginosa result in loss of DNA methylation at enhancer and DNase hypersensitive site regions in lung macrophages, Epigenetic.2020;1–14.

  80. Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  81. Licciardi PV, Wong SS, Tang ML, Karagiannis TC. Epigenome targeting by probiotic metabolites. Gut Pathog. 2010;2:24.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lin LF, Posfai J, Roberts RJ, Kong H. Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc Natl Acad Sci USA. 2001;98(5):2740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Løbner-Olesen A, Boye E, Marinus MG. Expression of the Escherichia coli dam gene. Mol Microbiol. 1992;6(13):1841–51.

    Article  PubMed  Google Scholar 

  84. Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res. 2014;42:20–44.

    Article  CAS  PubMed  Google Scholar 

  85. Luviano, N., Diaz-Palma, S., Cosseau, C., & Grunau, C. (2018). A simple Dot Blot Assay for population scale screening of DNA methylation. bioRxiv.

  86. Lynch K. Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol. 2004;4:931–40.

    Article  CAS  PubMed  Google Scholar 

  87. Malhotra S, Hayes D Jr, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev. 2019;32(3):e00138-e218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Malone T, Blumenthal RM, Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995;253:618–32.

    Article  CAS  PubMed  Google Scholar 

  89. Manso AS, Chai MH, Atack JM, Furi L, et al. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun. 2014;5:5055.

    Article  CAS  PubMed  Google Scholar 

  90. Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009;33(3):488–503.

    Article  CAS  PubMed  Google Scholar 

  91. Marinus MG, Morris NR. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973;114:1143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marinus MG. Methylation of DNA in Escherichia coli and Salmonella. Cell Mol Biol. 1996;782–91.

  93. Mateyak MK, Kinzy TG. eEF1A: thinking outside the ribosome. J Biol Chem. 2010;285(28):21209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McCall CE, Yoza B, Liu T, El Gazzar. Gene-specific epigenetic regulation in serious infections with systemic inflammation. J Innate Immun. 2010;2:395–405.

  95. McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol. 2015;17(1):16–28.

    Article  PubMed  Google Scholar 

  96. Militello KT, Simon RD, Qureshi M, et al. Conservation of Dcmmediated cytosine DNA methylation in Escherichia coli. FEMS Microbiol Lett. 2012;328:78–85.

    Article  CAS  PubMed  Google Scholar 

  97. Nakajima T, Enomoto S, Yamashita S, Ando T, Nakanishi Y, et al. Persistence of a component of DNA methylation in gastric mucosae after Helicobacter pylori eradication. J Gastroenterol. 2010;45:37–44.

    Article  CAS  PubMed  Google Scholar 

  98. Nakayama-Imaohji H, Hirakawa H, Ichimura M, Wakimoto S, Kuhara S, et al. Identification of the site-specific DNA invertase responsible for the phase variation of SusC/SusD family outer membrane proteins in Bacteroides fragilis. J Bacteriol. 2009;191(19):6003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakayama-Imaohji H, Hirota K, Yamasaki H, Yoneda S, Nariya H, et al. DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis. PLoS ONE. 2016;11(2):e0148887.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nou X, Skinner B, Braaten B, Blyn L, Hirsch D, et al. Regulation of pyelonephritis-associated pili phase-variation in Escherichia coli: binding of the PapI and the Lrp regulatory proteins is controlled by DNA methylation. Mol Microbiol. 1993;7(4):545–53.

    Article  CAS  PubMed  Google Scholar 

  101. O’Driscoll J, Glynn F, Cahalane O, O’Connell-Motherway M. Lactococcal plasmid pNP40 encodes a novel, temperaturesensitive restriction-modification system. Appl Environ Microbiol. 2004;70:5546–56.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Okuda J, Toyotome T, Kataoka N, Ohno M, Abe H, et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochem Biophys Res Commun. 20015;333: 531–39.

  103. Oliveira FA, Paludo KS, Arend LN, Farah SM, Pedrosa FO, et al. Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli strains. Genet Mol Res: GMR. 2011;10(4):4114–25.

    Article  CAS  PubMed  Google Scholar 

  104. Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A et al. Epigenomic landscape of the human pathogen Clostridium difficile. bioRxiv. 2015;5(1):166–80.

  105. Oza JP, Yeh JB, Reich NO. DNA methylation modulates Salmonella enterica serovar Typhimurium virulence in Caenorhabditis elegans. FEMS Microbiol Lett. 2005;245:53–9.

    Article  CAS  PubMed  Google Scholar 

  106. Panis G, Murray SR, Viollier PH. Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. FEMS Microbiol Rev. 2015;39:120–33.

    Article  CAS  PubMed  Google Scholar 

  107. Phillips ZN, Tram G, Seib KL, Atack JM. Phase-variable bacterial loci: How bacteria gamble to maximise fitness in changing environments. Biochem Soc Trans. 2019;47:1131–41.

    Article  CAS  PubMed  Google Scholar 

  108. Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases—a historical perspective and more. Nucleic Acids Res. 2014;42:7489–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Polaczek P, Kwan K, Campbell JL. GATC motifs may alter the conformation of DNA depending on sequence context and N6-adenine methylation status: possible implications for DNA-protein recognition. Mol Gen Genet. 1998;258:488–93.

    Article  CAS  PubMed  Google Scholar 

  110. Porter NT, Canales P, Peterson DA, Martens EC. A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. Cell Host Microbe. 2017;22(4):494-506.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983;104(4):571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Raleigh EA, Brooks JE. Restriction-modification systems: where they are and what they do. In: de Bruijn FJ, Lupski JR, Weinstock GM, editors. Bacterial genomes: physical structure and analysis. New York, N.Y: Chapman and Hall; 1998;pp. 78–92.

  113. Rao DN, Dryden DTF, Bheemanaik S. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res. 2014;42:45–55.

    Article  CAS  PubMed  Google Scholar 

  114. Reisenauer A, Shapiro L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J. 2002;21:4969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Renelli M, Matias V, Lo RY, Beveridge TJ. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology (Reading). 2004;150(Pt 7):2161–9.

    Article  CAS  Google Scholar 

  116. Riggs MG, Whittaker RG, Neumann JR, Ingram VM. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature. 1977;268:462–4.

    Article  CAS  PubMed  Google Scholar 

  117. Roberts RJ, Belfort M, Bestor T, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003;31:1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roberts JA, Kaack MB, Fussell EN. Bacterial adherence in urinary tract infections: preliminary studies in a primate model. Infection. 1989;17(6):401–4.

    Article  CAS  PubMed  Google Scholar 

  119. Robertson GT, Reisenauer A, Wright R, Jensen RB, Jensen A, Shapiro L, Roop RM II. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol. 2000;182(12):3482–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rolando M, Buchrieser C. Post-translational modifications of host proteins by Legionella pneumophila: A sophisticated survival strategy. Future Microbiol. 2012;7:369–81.

    Article  CAS  PubMed  Google Scholar 

  121. Sekulovic O, Mathias Garrett E, Bourgeois J, Tamayo R, Shen A, et al. Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet. 2018;14(4):e1007332.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sharma G, Upadhyay S, Srilalitha M, Nandicoori VK, Khosla S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res. 2015;43:3922–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Silverman M, Simon M. Phase variation: genetic analysis of switching mutants. Cell. 1980;19(4):845–54.

    Article  CAS  PubMed  Google Scholar 

  124. Singh M, Yadav V, Das G. Chapter 4 - Host Epigenetic Modifications in Mycobacterium tuberculosis Infection: A Boon or Bane,Editor(s): Denise L. Faustman, The Value of BCG and TNF in Autoimmunity (Second Edition), Academic Press.2018;Pages 39–55, ISBN 9780128146033.

  125. Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci USA. 2005;102:5547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stephens C, Reisenauer A, Wright R, Shapiro L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc Natl Acad Sci USA. 1996;93(3):1210–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sun J. Enteric bacteria and cancer stem cells. Cancers (Basel). 2010;3:285–97.

    Article  Google Scholar 

  128. Taketani M, Donia MS, Jacobson AN, Lambris JD, Fischbach MA. A phase-variable surface layer from the gut symbiont Bacteroides thetaiotaomicron. MBio. 2015;6(5):e01339-e1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tan Y, Arnold RJ, Luo ZQ. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA. 2011;108:21212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ting K, Aitken KJ, Penna F, Samiei AN, Sidler M, et al. Uropathogenic E.coli (UPEC) infection induces proliferation through enhancer of Zeste Homologue 2 (EZH2). PLoS ONE. 2016;11(3):e0149118.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G. Redox-dependent shift of OxyRDNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell. 1994;78(5):897–909.

    Article  CAS  PubMed  Google Scholar 

  132. Tolg C, Sabha N, Cortese R, Panchal T, Ahsan A, et al. Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. LabInvest. 2011;91:825–36.

    CAS  Google Scholar 

  133. Tong T, Chen S, Wang L, Tang Y, Ryu JY, et al. Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci USA. 2018;115:E2988–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Troy EB, Carey VJ, Kasper DL, Comstock LE. Orientations of the Bacteroides fragilis capsular polysaccharide biosynthesis locus promoters during symbiosis and infection. J Bacteriol. 2010;192(21):5832–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Turner KH, Vallet-Gely I, Dove SL. Epigenetic control of virulence gene expression in Pseudomonas aeruginosa by a LysR-type transcription regulator. PLoS Genet. 2009;5(12):e1000779.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Urig S, Gowher H, Hermann A, Beck C, Fatemi M, et al. The Escherichia coli damDNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol. 2002;319:1085–96.

    Article  CAS  PubMed  Google Scholar 

  137. Ushijima T, Hattori N. Molecular pathways: Involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res. 2012;18:923–9.

    Article  CAS  PubMed  Google Scholar 

  138. van der Woude MW, Bäumler AJ. Phase and antigenic variation in bacteria. Clin MicrobiolRev. 2004;7(3):581–611.

    Article  Google Scholar 

  139. van der Woude MW, Braaten BA, Low DA. Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol Microbiol. 1992;6(17):2429–35.

    Article  PubMed  Google Scholar 

  140. Veilleux C, Bernardino J, Gibaud A, Niveleau A, Malfoy B, Dutrillaux B, Bourgeois CA. Changes in methylation of tumor cells: a new in situ quantitative approach on interphase nuclei and chromosomes. Bull Cancer. 1995;82(11):939–45.

    CAS  PubMed  Google Scholar 

  141. Waddington CH. The epigenotype 1942. Int J Epidemiol. 2012;1:10–3.

    Article  Google Scholar 

  142. Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid. 2009;61(3):141–50.

    Article  CAS  PubMed  Google Scholar 

  143. Wang L, Chen S, Xu T, Taghizadeh K, Wishnok JS, et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol. 2007;3:709–10.

    Article  CAS  PubMed  Google Scholar 

  144. Wei Y, Huang Q, Tian X, Zhang M, He J, et al. Single-molecule optical mapping of the distribution of DNA phosphorothioate epigenetics. Nucleic Acids Res. 2021;49(7):3672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Woodcock CB, Yakubov AB, Reich NO. Caulobacter crescentus cell cycle-regulated DNA methyltransferase uses a novel mechanism for substrate recognition. Biochemistry. 2017;56:3913–22.

    Article  CAS  PubMed  Google Scholar 

  146. Wu X, Cao B, Aquino P, Chiu TP, Chen C, et al. Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci. 2020;117:14322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xie X, Jin J, Zhu L, Jie Z, Li Y, et al. Cell type-specific function of TRAF2 and TRAF3 in regulating type I IFN induction. Cell Biosci. 2019;9:5.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Xiong X, Wu G, Wei Y, Liu L, Zhang Y, et al. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat Microbiol. 2020;5:917–28.

    Article  CAS  PubMed  Google Scholar 

  149. Xu T, Yao F, Zhou X, Deng Z, You D. A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res. 2010;38:7133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xueiting H, Wang J, Li J, Liu Y, Liu X, et al. Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Res. 2020;48(20):11468–85.

    Article  Google Scholar 

  151. Yu M, Ji L, Neumann DA, Chung DH, Groom J, et al. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mCTet-assisted-bisulfite sequencing. Nucleic Acids Res. 2015;43:1–10.

    CAS  Google Scholar 

  152. Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, et al. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLOS Genet. 2015;11:e1004831.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.G was supported by fellowship grant from West Bengal Pollution Control Board (WBPCB) [Memo No. 3903-1M-24/2010 (Part-III) dt. 27/12/2019], Government of West Bengal, India. The authors thank Ms Riddhi Chakraborty for copy editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranadhir Chakraborty.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul; Reviewers: Swanand Hardikar, Debabrata Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguli, S., Chakraborty, R. Bacterial epigenetics opens door to novel frontier in Infection biology. Nucleus 64, 383–399 (2021). https://doi.org/10.1007/s13237-021-00375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-021-00375-y

Keywords

Navigation