Skip to main content

Advertisement

Log in

Genetic variations and epigenetic modulations in CYP genes: Implications in NSAID-treatment of arthritis patients

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Drugs show specific pharmacodynamic properties and a plethora of adverse drug reactions depending on the genetic makeup of their users. Pharmacogenomics explains the variations of effects of drugs in humans depending on their race, ethnicity, age and gender. It has been extensively reported in the literature that variations in drug metabolism is associated with genetic polymorphism. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for pain management in arthritis. Cytochrome P450 (CYP) 2C9 is responsible for the metabolism of a wide range of drugs including the NSAIDs. The gene encoding for this enzyme is found in different polymorphic forms. People with CYP variants, CYP2C9*2 and CYP2C9*3 have been found to exhibit marked differences in NSAID metabolism and clearance compared to individuals with the wild type CYP gene (CYP2C9*1). There are several reports indicating epigenetic regulation of the CYP promoter that influences expression and functionality of this enzyme complex. Complications like adverse drug reactions involving gastro-intestinal bleeding are often fatal in NSAID treated patients with genetic polymorphism. In this review, complications associated with the use of NSAIDs and CYP polymorphism including drugs that are under investigation to bypass CYP polymorphism-linked adverse drug reactions, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AS:

Ankylosing spondylitis

ASA:

Acetyl salicylic acid

AUGITB:

Acute upper gastro-intestinal tract bleeding

CAR:

Constitutive androstane receptor

CDC:

Centers for disease control and prevention

COX:

Cyclooxygenase

CPIC:

Clinical pharmacogenetics implentation consortium

CV:

Cardiovascular

CYP:

Cytochrome P450

DNMTs:

DNA methyltransferase

GA:

Gouty arthritis

mPGES-1:

Microsomal prostaglandin E2 synthase-1

hPH:

Human primary hepatocytes

HNF4:

Hepatocyte nuclear factor 4

mg/d:

Milligrams per day

MC:

Mediator complex

MED25:

Mediator complex subunit 25

NF-kB:

Nuclear factor-kB

NO-NSAIDS:

Nitric oxide producing NSAID

NSAID:

Nonsteroidal anti-inflammatory drugs

NIADR:

NSAID-induced adverse drug reactions

NR:

Nuclear receptor

OA:

Osteoarthritis

PA:

Psoriatic arthritis

RA:

Rheumatoid arthritis

PXR:

Pregnane receptor

SJS:

Stevens-Johnson Syndrome

TEN:

Toxic epidermal necrolysis

RDC:

Reduced drug clearance

References

  1. Agúndez JA, García-Martín E, Martínez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol. 2009;5(6):607–20. https://doi.org/10.1517/17425250902970998.

    Article  PubMed  Google Scholar 

  2. Agúndez JA, Martínez C, García-Martín E, Ladero JM. Cytochrome P450 CYP2C9 polymorphism and NSAID-related acute gastrointestinal bleeding. Gastroenterology. 2007;133(6):2071–3. https://doi.org/10.1053/j.gastro.2007.10.015.

    Article  PubMed  Google Scholar 

  3. Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of drug metabolizing enzymes and transporters relevance to precision medicine. Genom Proteom Bioinform. 2016. https://doi.org/10.1016/j.gpb.2016.03.008.

  4. Alhazzani AA, Munisamy M, Karunakaran G. Pharmacogenetics of CYP2C19 genetic polymorphism on clopidogrel response in patients with ischemic stroke from Saudi Arabia. Neurosciences (Riyadh). 2017;22(1):31–7.

    Article  Google Scholar 

  5. Almeman A. Major CYP450 Polymorphism among Saudi Patients. Drug Metab Lett. 2021;14(1):17–24. https://doi.org/10.2174/1872312814666200722122232.

    CAS  PubMed  Google Scholar 

  6. Aoyama T, Ishida Y, Kaneko M, Miyamoto A, Saito Y, Tohkin M, Kawai S, Matsumoto Y. Pharmacokinetics and pharmacodynamics of meloxicam in east asian populations: the role of ethnicity on drug response. CPT Pharmaco Syst Pharmacol. 2017;6(12):823–32. https://doi.org/10.1002/psp4.12259.

    Article  CAS  Google Scholar 

  7. Arthritis | CDC [Internet]. Cdc.gov. 2021 [cited 2021 Aug 24]. Available from: https://www.cdc.gov/chronicdisease/resources/publications/factsheets/arthritis.htm

  8. Arthritis Facts, Figures and Statistics [Internet]. Arthritis.ca. 2021 [cited 2021 Aug 24]. Available from: https://arthritis.ca/about-arthritis/what-is-arthritis/arthritis-facts-and-figures

  9. Arthritis-India [Internet]. Arthritis-india.com. 2021 [cited 2021 Aug 24]. Available from: https://www.arthritis-india.com

  10. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33(8):1582–614. https://doi.org/10.1016/j.biotechadv.2015.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Babu KS, Salvi SS. Aspirin and asthma. Chest. 2000;118(5):1470–6. https://doi.org/10.1378/chest.118.5.1470.

    Article  CAS  PubMed  Google Scholar 

  12. Bae JW, Choi CI, Jang CG, Lee SY. Effects of CYP2C9*1/*13 on the pharmacokinetics and pharmacodynamics of meloxicam. Br J Clin Pharmacol. 2011. https://doi.org/10.1111/j.1365-2125.2010.03853.x.

  13. Barbalho S, Goulart R, Buglio D, Araujo A, Guiguer E. The possible role of green tea on osteoarthritis a narrative report. Longhua Chinese Medicine. 2020;3:1–11.

    Article  Google Scholar 

  14. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020. https://doi.org/10.1016/j.bcp.2020.114147.

  15. Blanco G, Martínez C, Ladero JM, Garcia-Martin E, Taxonera C, Gamito FG, Diaz-Rubio M, Agundez JA. Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genomics. 2008;18(1):37–43. https://doi.org/10.1097/FPC.0b013e3282f305a9.

    Article  CAS  PubMed  Google Scholar 

  16. Bozina N, Bradamante V, Lovrić M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol. 2009;60(2):217–42.

    Article  CAS  PubMed  Google Scholar 

  17. Brenner SS, Herrlinger C, Dilger K, Mürdter TE, Hofmann U, Marx C, Klotz U. Influence of age and cytochrome P450 2C9 genotype on the steady-state disposition of diclofenac and celecoxib. Clin Pharmacokinet. 2003;42(3):283–92. https://doi.org/10.2165/00003088-200342030-00003.

    Article  CAS  PubMed  Google Scholar 

  18. Carbonell N, Verstuyft C, Massard J, Letierce A, Cellier C, Deforges L, Saliba F, Delchier J, Becquemont L. CYP2C9*3 loss-of-function allele is associated with acute upper gastrointestinal bleeding related to the use of NSAIDS other than aspirin. Clin Pharmacol Ther. 2010;87(6):693–8. https://doi.org/10.1038/clpt.2010.33.

    Article  CAS  PubMed  Google Scholar 

  19. Chang SY, Li W, Traeger SC, Wang B, Cui D, Zhang H, Wen B, Rodrigues AD. Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro. Drug Metab Dispos. 2008;36(12):2513–22. https://doi.org/10.1124/dmd.108.022970.

    Article  CAS  PubMed  Google Scholar 

  20. Chatterjee A, Bandyopadhyay S. Herbal remedy: an alternate therapy of nonsteroidal anti-inflammatory drug induced gastric ulcer healing. Ulcers. 2014. https://doi.org/10.1155/2014/361586.

  21. Choi CI, Kim MJ, Jang CG, Park YS, Bae JW, Lee SY. Effects of the CYP2C9*1/*13 genotype on the pharmacokinetics of lornoxicam. Basic Clin Pharmacol Toxicol. 2011;109(6):476–80. https://doi.org/10.1111/j.1742-7843.2011.00751.x.

    Article  CAS  PubMed  Google Scholar 

  22. Crofford L. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther. 2013. https://doi.org/10.1186/ar4174.

  23. Cryer B, Feldman M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am J Med. 1998;104(5):413–21. https://doi.org/10.1016/s0002-9343(98)00091-6.

    Article  CAS  PubMed  Google Scholar 

  24. Day RO, Graham GG. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ. 2013;346:f3195; Erratum in: BMJ. 2013;347:f4310; https://doi.org/10.1136/bmj.f3195

  25. Dromgoole SH, Furst DE, Paulus HE. Rational approaches to the use of salicylates in the treatment of rheumatoid arthritis. Semin Arthritis Rheum. 1981;11(2):257–83. https://doi.org/10.1016/0049-0172(81)90092-5.

    Article  CAS  Google Scholar 

  26. Durrmeyer X, Hovhannisyan S, Médard Y, Jacqz-Aigrain E, Decobert F, Barre J, Alberti C, Aujard Y, Danan C, Baud O. Are cytochrome P450 CYP2C8 and CYP2C9 polymorphisms associated with ibuprofen response in very preterm infants? PLoS ONE. 2010;5(8): e12329. https://doi.org/10.1371/journal.pone.0012329.

  27. Englert NA, Luo G, Goldstein JA, Surapureddi S. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9. J Biol Chem. 2015;290(4):2264–78. https://doi.org/10.1074/jbc.M114.579474.

    Article  CAS  PubMed  Google Scholar 

  28. Estany-Gestal A, Salgado-Barreira A, Sánchez-Diz P, Figueiras A. Influence of CYP2C9 genetic variants on gastrointestinal bleeding associated with nonsteroidal anti-inflammatory drugs: a systematic critical review. Pharmacogenet Genomics. 2011;21(7):357–64. https://doi.org/10.1097/FPC.0b013e328346d2bb.

    Article  CAS  PubMed  Google Scholar 

  29. Esteves F, Rueff J, Kranendonk M. The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family. J Xenobiot. 2021;11(3):94–114. https://doi.org/10.3390/jox11030007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figueiras A, Estany-Gestal A, Aguirre C, et al. CYP2C9 variants as a risk modifier of NSAID-related gastrointestinal bleeding: a case-control study. Pharmacogenet Genomics. 2016. https://doi.org/10.1097/FPC.0000000000000186.

  31. Fries JF, Ramey DR, Singh G, Morfeld D, Bloch DA, Raynauld JP. A reevaluation of aspirin therapy in rheumatoid arthritis. Arch Intern Med. 1993;153(21):2465–71.

    Article  CAS  PubMed  Google Scholar 

  32. Fries JF, Williams CA, Bloch DA. The relative toxicity of non-steroidal anti-inflammatory drugs (NSAIDs). Arthritis Rheum. 1991;34:1353–60.

    Article  CAS  PubMed  Google Scholar 

  33. Gao Y, Liu D, Wang H, Zhu J, Chen C. Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug-drug interactions. Xenobiotica. 2010;40:467–75. https://doi.org/10.3109/00498254.2010.487163.

    Article  CAS  PubMed  Google Scholar 

  34. García-Martín E, Martínez C, Ladero JM, Agúndez JA. Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diagn Ther. 2006;10(1):29–40. https://doi.org/10.1007/BF03256440.

    Article  PubMed  Google Scholar 

  35. Goh LL, Lim CW, Sim WC, Toh LX, Leong KP. Analysis of genetic variation in CYP450 genes for clinical implementation. PLoS ONE. 2017;12(1): e0169233. https://doi.org/10.1371/journal.pone.0169233.

  36. Gill P, Bhattacharyya S, McCullough S, Letzig L, Mishra PJ, Luo C, Dweep H, James L. MicroRNA regulation of CYP 1A2, CYP3A4 and CYP2E1 expression in acetaminophen toxicity. Sci Rep. 2017;7(1):12331.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006. https://doi.org/10.1038/sj.onc.1209982.

  38. Główka F, Karaźniewicz-Łada M, Grześkowiak E, Rogozinska D, Romanowski W. Clinical pharmacokinetics of ketoprofen enantiomers in wild type of Cyp 2c8 and Cyp 2c9 patients with rheumatoid arthritis. Eur J Drug Metab Pharmacokinet. 2011;36(3):167–73. https://doi.org/10.1007/s13318-011-0041-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gong L, Thorn CF, Bertagnolli MM, Grosser T, Altman RB, Klein TE. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(4):310–8. https://doi.org/10.1097/FPC.0b013e32834f94cb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo Y, Zhang Y, Wang Y, et al. Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab Dispos. 2005;33(6):749–53. https://doi.org/10.1124/dmd.105.003616.

    Article  CAS  PubMed  Google Scholar 

  41. Guengerich FP. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol Res. 2020;37(1):1–23.

    Article  PubMed Central  Google Scholar 

  42. Guttman Y, Nudel A, Kerem Z. Polymorphism in cytochrome P450 3A4 is ethnicity related. Front Genet. 2019;10:224. https://doi.org/10.3389/fgene.2019.00224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han M, Jia L, Lv W, Wang L, Cui W. Epigenetic enzyme mutations: role in tumorigenesis and molecular inhibitors. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.00194.

  44. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011. https://doi.org/10.1161/CIRCULATIONAHA.110.956839.

  45. Harvey A. The role of natural products in drug discovery and development in the new millennium. IDrugs. 2010;13(2):70–2.

    PubMed  Google Scholar 

  46. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111–29. https://doi.org/10.1038/nrd4510.

    Article  CAS  PubMed  Google Scholar 

  47. He SM, Zhou ZW, Li XT, Zhou SF. Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Curr Med Chem. 2011;18(5):667–713. https://doi.org/10.2174/092986711794480131.

    Article  CAS  PubMed  Google Scholar 

  48. Henriques D, Browne KA, Barnett MW, Parejo M, Kryger P, Freeman TC, Muñoz I, Garnery L, Highet F, Jonhston JS, McCormack GP, Pinto MA. High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: an accurate and cost-effective SNP-based tool. Sci Rep. 2018;8(1):8552. https://doi.org/10.1038/s41598-018-26932-1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ho KY, Gwee KA, Cheng YK, Yoon KH, Hee HT, Omar AR. Nonsteroidal anti-inflammatory drugs in chronic pain: implications of new data for clinical practice. J Pain Res. 2018;11:1937–48. https://doi.org/10.2147/JPR.S168188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ito S, Okuda-Ashitaka E, Minami T. Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin. Neurosci Res. 2001;41(4):299–332. https://doi.org/10.1016/s0168-0102(01)00289-9.

    Article  CAS  PubMed  Google Scholar 

  51. Jaja C, Bowman L, Wells L, Patel N, Xu H, Lyon M, Kutlar A. Preemptive genotyping of CYP2C8 and CYP2C9 allelic variants involved in NSAIDs metabolism for sickle cell disease pain management. Clin Transl Sci. 2015. https://doi.org/10.1111/cts.12260.

  52. Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E. Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Evid Based Complement Alternat Med. 2013;18(1):67–74.

    Article  Google Scholar 

  53. Kashfi K, Rayyan Y, Qiao LL, Williams JL, Chen J, Del Soldato P, Traganos F, Rigas B, Ryann Y. Nitric oxide-donating nonsteroidal anti-inflammatory drugs inhibit the growth of various cultured human cancer cells: evidence of a tissue type-independent effect. J Pharmacol Exp Ther. 2002;303(3):1273–82.

    Article  CAS  PubMed  Google Scholar 

  54. Kathuria A, Roosan M, Sharma A. CYP2C9 polymorphism and use of oral nonsteroidal anti-inflammatory drugs. U.S. Pharmacist. 2021. https://www.uspharmacist.com/article/cyp2c9-polymorphism-and-use-of-oral-nonsteroidal-antiinflammatory-drugs

  55. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–76. https://doi.org/10.1007/s10295-015-1723-5.

    Article  CAS  PubMed  Google Scholar 

  56. Kim JH, Kim YS, Song GG, Park JJ, Chang HI. Protective effect of astaxanthin on naproxen-induced gastric antral ulceration in rats. Eur J Pharmacol. 2005;514(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  57. Kim K. Genetic polymorphism of CYP2C9 in a Vietnamese population. Clin Pharmacol Ther. 2004;75(2):P68. https://doi.org/10.1016/j.clpt.2003.11.257.

    Article  Google Scholar 

  58. Kim S, Kim D, Byeon J, Kim Y, Kim D, Lim H, Lee C, Whang S, Choi C, Bae J, Lee Y, Jang C, Lee S. Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of celecoxib and its carboxylic acid metabolite. Arch Pharmacal Res. 2016;40(3):382–90.

    Article  Google Scholar 

  59. Kirchheiner J, Meineke I, Freytag G, Meisel C, Roots I, Brockmöller J. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2*. Clin Pharmacol Ther. 2002;72(1):62–75. https://doi.org/10.1067/mcp.2002.125726.

    Article  CAS  PubMed  Google Scholar 

  60. Kirchheiner J, Meineke I, Roots I, Brockmöller J. Comparison of the impact of the CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of the NSAIDS celecoxib, diclofenac, and ibuprofen. Clin Pharmacol Ther. 2003;73(2):P75–P75.

    Google Scholar 

  61. Kirchheiner J, Meineke I, Steinbach N, Meisel C, Roots I, Brockmöller J. Pharmacokinetics of diclofenac and inhibition of cyclooxygenases 1 and 2: no relationship to the CYP2C9 genetic polymorphism in humans. Br J Clin Pharmacol. 2003;55(1):51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirchheiner J, Störmer E, Meisel C, Steinbach N, Roots I, Brockmöller J. Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics. 2003;13(8):473–80. https://doi.org/10.1097/00008571-200308000-00005.

    Article  CAS  PubMed  Google Scholar 

  63. Kunori S, Matsumura S, Okuda-Ashitaka E, Katano T, Audoly LP, Urade Y, Ito S. A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord. Gli. 2011. https://doi.org/10.1002/glia.21090.

  64. Laine L, Bombardier C, Hawkey CJ, Davis B, Shapiro D, Brett C, Reicin A. Stratifying the risk of NSAID-related upper gastrointestinal clinical events: results of a double-blind outcomes study in patients with Rheumatoid Arthritis. Gastroenterology. 2002;123(4):1006–12.

    Article  CAS  PubMed  Google Scholar 

  65. Lamba V, Ghodke Y, Guan W, Tracy TS. microRNA-34a is associated with expression of key hepatic transcription factors and cytochromes P450. Biochem Biophys Res Commun. 2014;445(2):404–11. https://doi.org/10.1016/j.bbrc.2014.02.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002. https://doi.org/10.1097/00008571-200204000-00010.

  67. Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA. Differences in flurbiprofen pharmacokinetics between CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. Eur J Clin Pharmacol. 2003;58(12):791–4. https://doi.org/10.1007/s00228-003-0574-6.

    Article  CAS  PubMed  Google Scholar 

  68. Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res. 2011;34(11):1799–816. https://doi.org/10.1007/s12272-011-1103-2.

    Article  CAS  PubMed  Google Scholar 

  69. Lee YJ, Byeon JY, Kim YH, Kim SH, Choi CI, Bae JW, Sohn UD, Jang CG, Lee J, Lee SY. Effects of CYP2C9*1/*3 genotype on the pharmacokinetics of flurbiprofen in Korean subjects. Arch Pharm Res. 2015;38(6):1232–7. https://doi.org/10.1007/s12272-015-0580-0.

    Article  CAS  PubMed  Google Scholar 

  70. Leemann T, Transon C, Dayer P. Cytochrome P450TB (CYP2C): a major monooxygenase catalyzing diclofenac 4′-hydroxylation in human liver. Life Sci. 1993;52:29–34.

    Article  CAS  PubMed  Google Scholar 

  71. Lequieu J, Schwartz DC, de Pablo JJ. In silico evidence for sequence-dependent nucleosome sliding. Proc Natl Acad Sci U S A. 2017;114(44):E9197–205. https://doi.org/10.1073/pnas.1705685114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Levy G. Pharmacokinetics of salicylate elimination in man. J Pharm Sci. 1965;54:959–67.

    Article  CAS  Google Scholar 

  73. Li D, Tolleson WH, Yu D, et al. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2019;37(3):180–214. https://doi.org/10.1080/10590501.2019.1639481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim JW, Kim H, Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest. 2001;81(3):349–60. https://doi.org/10.1038/labinvest.3780243.

    Article  CAS  PubMed  Google Scholar 

  75. López-Rodríguez R, Novalbos J, Gallego-Sandín S, Román-Martínez M, Torrado J, Gisbert JP, Abad-Santos F. Influence of CYP2C8 and CYP2C9 polymorphisms on pharmacokinetic and pharmacodynamic parameters of racemic and enantiomeric forms of ibuprofen in healthy volunteers. Pharmacol Res. 2008;58(1):77–84. https://doi.org/10.1016/j.phrs.2008.07.004.

    Article  PubMed  Google Scholar 

  76. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–6.

    PubMed  Google Scholar 

  77. Ma J, Yang XY, Qiao L, Liang LQ, Chen MH. CYP2C9 polymorphism in non-steroidal anti-inflammatory drugs-induced gastropathy. J Dig Dis. 2008;9(2):79–83. https://doi.org/10.1111/j.1751-2980.2008.00326.x.

    Article  CAS  PubMed  Google Scholar 

  78. Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: a Review. Curr Drug Targets. 2018;19(1):38–54. https://doi.org/10.2174/1389450118666170125144557.

    Article  CAS  PubMed  Google Scholar 

  79. Maroon JC, Bost JW, Maroon A. Natural anti-inflammatory agents for pain relief. Surg Neurol Int. 2010;1:80. https://doi.org/10.4103/2152-7806.73804.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Martin JH, Begg EJ, Kennedy MA, Roberts R, Barclay ML. Is cytochrome P450 2C9 genotype associated with NSAID gastric ulceration? Br J Clin Pharmacol. 2001;51(6):627–30. https://doi.org/10.1046/j.0306-5251.2001.01398.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martín-De Saro M, Amancio-Chassin O, Urueta-Cuéllar H, González-Huerta L, Cuevas-Covarrubias SA. Pharmacokinetics of diclofenac in healthy controls with wild-type phenotype for CYP2C9 shows metabolism variability. Rev Médica del Hosp Gen de Mex. 2017;80(2):92–6. https://doi.org/10.1016/j.hgmx.2017.02.001.

    Google Scholar 

  82. Martínez C, Blanco G, Ladero J, García-Martín E, Taxonera C, Gamito F, Diaz-Rubio M, Agúndez J. Genetic predisposition to acute gastrointestinal bleeding after NSAIDs use. Bri J Pharmacol. 2004. https://doi.org/10.1038/sj.bjp.0705623.

  83. Mazaleuskaya LL, Theken KN, Gong L, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: ibuprofen pathways. Pharmacogenet Genomics. 2015. https://doi.org/10.1097/FPC.0000000000000113.

  84. McEvoy L, Carr DF, Pirmohamed M. Pharmacogenomics of nsaid-induced upper gastrointestinal toxicity. Front Pharmacol. 2021;12: 684162. https://doi.org/10.3389/fphar.2021.684162.

  85. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–25. https://doi.org/10.1007/978-0-387-46401-5_3.

    Article  PubMed  Google Scholar 

  86. Milewski M, Mastalerz L, Nizankowska E, et al. Nasal provocation test with lysine-aspirin for diagnosis of aspirin sensitive asthma. J Allergy Clin Immunol. 1998;101:581–6.

    Article  CAS  PubMed  Google Scholar 

  87. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morris-Rosendahl DJ, Fiebich BL. The future of genetic testing for drug response. Dialogues Clin Neurosci. 2004;6(1):27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nelson DR. Cytochrome P450 nomenclature. Methods Mol Biol. 2004;320:1–10.

    Google Scholar 

  90. Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, Graham DY, Borer JS, Wisniewski LM, Wolski KE, Wang Q, Menon V, Ruschitzka F, Gaffney M, Beckerman B, Berger MF, Bao W, Lincoff AM. Cardiovascular safety of celecoxib naproxen or ibuprofen for arthritis. N Engl J Med. 2016;375(25):2519–29.

    Article  CAS  PubMed  Google Scholar 

  91. Paganotti GM, Gramolelli S, Tabacchi F, Russo G, Modiano D, Coluzzi M, Romano R. Distribution of human CYP2C8*2 allele in three different African populations. Malar J. 2012. https://doi.org/10.1186/1475-2875-11-125.

  92. Park HJ, Choi YJ, Kim JW, et al. Differences in the epigenetic regulation of cytochrome P450 genes between human embryonic stem cell-derived hepatocytes and primary hepatocytes. PLoS ONE. 2015;10(7): e0132992. https://doi.org/10.1371/journal.pone.0132992.

  93. Partensky PD, Narlikar GJ. Chromatin remodelers act globally, sequence positions nucleosomes locally. J Mol Biol. 2009;391(1):12–25. https://doi.org/10.1016/j.jmb.2009.04.085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peiró AM. Pharmacogenetics in pain treatment. Adv Pharmacol. 2018. https://doi.org/10.1016/bs.apha.2018.04.004.

  95. Peng L, Zhong X. Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B. 2015;5(2):106–12. https://doi.org/10.1016/j.apsb.2015.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Perini JA, Vianna-Jorge R, Brogliato AR, Suarez-Kurtz G. Influence of CYP2C9 genotypes on the pharmacokinetics and pharmacodynamics of piroxicam. Clin Pharmacol Ther. 2005;78(4):362–9. https://doi.org/10.1016/j.clpt.2005.06.014.

    Article  CAS  PubMed  Google Scholar 

  97. Pilotto A, Seripa D, Franceschi M, Scarcelli C, Colaizzo D, Grandone E, Niro V, Andriulli A, Leandro G, Di Mario F, Dallapiccola B. Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology. 2007;133(2):465–71. https://doi.org/10.1053/j.gastro.2007.05.025.

    Article  CAS  PubMed  Google Scholar 

  98. Pleskow WW, Stevenson DD, Mathison DA, et al. Aspirin desensitization in aspirin-sensitive asthmatic patients: clinical manifestations and characterization of the refractory period. J Allergy Clin Immunol. 1982;69:11–9.

    Article  CAS  PubMed  Google Scholar 

  99. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0082562.

  100. Rainsford KD. Anti-inflammatory drugs in the 21st century. Subcell Biochem. 2007. https://doi.org/10.1007/1-4020-5688-5_1.

  101. Ratchford SM, Lavin KM, Perkins RK, Jemiolo B, Trappe SW, Trappe TA. Aspirin as a COX inhibitor and anti-inflammatory drug in human skeletal muscle. J Appl Physiol. 2017;123:6.

    Article  Google Scholar 

  102. Rieger JK, Reutter S, Hofman U, Schwab M, Zanger UM. CYP2C9 Is Regulated by miR-130b. Drug Metab Dispos. 2015. https://doi.org/10.1124/dmd.114.062844.

  103. Ricciotti E, FitzGerald G. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rigas B, Kashfi K. Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol Med. 2004. https://doi.org/10.1016/j.molmed.2004.05.004.

  105. Roden DM, Wilke RA, Kroemer HK, Stein CM. Pharmacogenomics: the genetics of variable drug responses. Circulation. 2011. https://doi.org/10.1161/CIRCULATIONAHA.109.914820.

  106. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165–84. https://doi.org/10.1007/s40291-013-0028-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sánchez-Diz P, Estany-Gestal A, Aguirre C, et al. Prevalence of CYP2C9 polymorphisms in the south of Europe. Pharmacogenomics J. 2009;9:306–10. https://doi.org/10.1038/tpj.2009.16.

    Article  PubMed  Google Scholar 

  108. Sandberg M, Yasar U, Stromberg P, et al. Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br J Clin Pharmacol. 2002;54:423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Segre EJ. Naproxen metabolism in man. J Clin Pharmacol. 1975. https://doi.org/10.1002/j.1552-4604.1975.tb01458.x.

  110. Silvoso GR. Incidence of gastric lesions in patients with rheumatic disease on chronic aspirin therapy. Ann Intern Med. 1979;91(4):517. https://doi.org/10.7326/0003-4819-91-4-517.

    Article  CAS  PubMed  Google Scholar 

  111. Simon LS, Weaver AL, Graham DY, et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. JAMA. 1999;282(20):1921–8. https://doi.org/10.1001/jama.282.20.1921.

    Article  CAS  PubMed  Google Scholar 

  112. Singh G, Ramey DR, Morfeld D, Shi H, Hatoum HT, Fries JF. Gastrointestinal tract complications of nonsteroidal anti-inflammatory drug treatment in rheumatoid arthritis: a prospective observational cohort study. Arch Intern Med. 1996;156(14):1530–6. https://doi.org/10.1001/archinte.1996.00440130066007.

    Article  CAS  PubMed  Google Scholar 

  113. Smutny T, Mani S, Pavek P. Post-translational and post-transcriptional modifications of pregnane X receptor (PXR) in regulation of the cytochrome P450 superfamily. Curr Drug Metab. 2013;14(10):1059–69. https://doi.org/10.2174/1389200214666131211153307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tang C, Shou M, Rushmore T, Mei Q, Sandhu P, Woolf E, Rose M, Gelmann A, Greenberg H, De Lepeleire I, Van Hecken A, De Schepper P, Ebel D, Schwartz J, Rodrigues A. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics. 2001;11(3):223–35.

    Article  CAS  PubMed  Google Scholar 

  115. Tang W, Stearns RA, Wang RW, Chiu S-HL, Baillie TA. Roles of human hepatic cytochrome P450s 2C9 and 3A4 in the metabolic activation of diclofenac. Chem Res Toxicol. 1999;12:192–9.

    Article  CAS  PubMed  Google Scholar 

  116. Tang X, Chen S. Epigenetic regulation of cytochrome p450 enzymes and clinical implication. Curr Drug Metab. 2015;16(2):86–96. https://doi.org/10.2174/138920021602150713114159.

    Article  CAS  PubMed  Google Scholar 

  117. Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, Klein TE, Agúndez JAG, Grosser T. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020. https://doi.org/10.1002/cpt.1830.

  118. Varga Z, Sabzwari SRA, Vargova V. Cardiovascular risk of nonsteroidal anti-inflammatory drugs: an under-recognized public health issue. Cureus. 2017;9(4): e1144. https://doi.org/10.7759/cureus.1144.

  119. Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G. CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther. 2004;76(1):18–26. https://doi.org/10.1016/j.clpt.2004.03.002.

    Article  CAS  PubMed  Google Scholar 

  120. Wang YM, Ong SS, Chai SC, Chen T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin Drug Metab Toxicol. 2012;8(7):803–17. https://doi.org/10.1517/17425255.2012.685237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang YZ, Sun G, Cai FC, Yang YS. Clinical features, diagnosis, and treatment strategies of gastrointestinal diaphragm disease associated with nonsteroidal anti-inflammatory drugs. Gastroenterol Res Pract. 2016. https://doi.org/10.1155/2016/3679741.

  122. Weckwerth GM, Dionísio TJ, Costa YM, et al. CYP450 polymorphisms and clinical pharmacogenetics of ibuprofen after lower third molar extraction. Eur J Clin Pharmacol. 2021;77(5):697–707. https://doi.org/10.1007/s00228-020-03046-0.

    Article  CAS  PubMed  Google Scholar 

  123. Willett L, Carson J, Strom B. Epidemiology of gastrointestinal damage associated with nonsteroidal anti-inflammatory drugs. Drug Saf. 1994;10(2):170–81. https://doi.org/10.2165/00002018-199410020-00006.

    Article  CAS  PubMed  Google Scholar 

  124. Williams JL, Borgo S, Hasan I, Castillo E, Traganos F, Rigas B. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs. Cancer Res. 2001;61:3285–9.

    CAS  PubMed  Google Scholar 

  125. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol. 1992;22(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  126. Yang W, Zhao D, Han S, Tian Z, Yan L, Zhao G, Kan Q, Zhang W, Zhang L. CYP3A4*1G regulates CYP3A4 intron 10 enhancer and promoter activity in an allelic dependent manner. Int J Clin Pharmacol Ther. 2015;53(08):647–57.

    Article  CAS  PubMed  Google Scholar 

  127. Yasar U, Eliasson E, Forslund-Bergengren C, Tybring G, Gadd M, Sjöqvist F, Dahl ML. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol. 2001. https://doi.org/10.1007/s00228-001-0376-7.

  128. Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. Microrna pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos. 2016;44(3):308–19. https://doi.org/10.1124/dmd.115.067470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yu D, Green B, Marrone A, Guo Y, Kadlubar S, Lin D, Fuscoe J, Pogribny I, Ning B. Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci Rep. 2015;5:8534. https://doi.org/10.1038/srep08534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  131. Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/ genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392:1093–108.

    Article  CAS  PubMed  Google Scholar 

  132. Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011;10(4):655–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang Y, Zhong D, Si D, Guo Y, Chen X, Zhou H. Lornoxicam pharmacokinetics in relation to cytochrome P450 2C9 genotype. Br J Clin Pharmacol. 2005;59(1):14–7. https://doi.org/10.1111/j.1365-2125.2005.02223.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhong X, Liu M, Yao W, Du K, He M, Jin X, Jiao L, Ma G, Wei B, Wei M. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res. 2019. https://doi.org/10.1002/mnfr.201801230.

  135. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295. https://doi.org/10.1080/03602530902843483.

    Article  CAS  PubMed  Google Scholar 

  136. Zhou S, Zhou Z, Ding K, Yuan Y, Loftin C, Zhang F, Zhan CG. DREAM-in-CDM approach and identification of a new generation of anti-inflammatory drugs targeting mPGES-1. Sci Rep. 2020;10:101–87. https://doi.org/10.1038/s41598-020-67283-0.

    Google Scholar 

  137. Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700. https://doi.org/10.1002/cpt.690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zi J, Liu D, Ma P, Huang H, Zhu J, Wei D, Yang J, Chen C. Effects of CYP2C9*3 and CYP2C9*13 on diclofenac metabolism and inhibition-based drug-drug interactions. Drug Metab Pharmacokinet. 2010;25(4):343–50. https://doi.org/10.2133/dmpk.dmpk-10-rg-009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Natural Sciences and Engineering Research Council of Canada is acknowledged for support (NSERC, application number RGPIN-2020-05786). The authors would also like to acknowledge the support from Department of Higher Education, Government of West Bengal, India

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC, application number RGPIN-2020–05786).

Author information

Authors and Affiliations

Authors

Contributions

KK and SBF conceived and planned the review. SRC, ODG, AKG and SBF drafted the manuscript. KK and PSS did critical revision of the article. KK and SBF finally approved the version to be published.

Corresponding authors

Correspondence to Syed Benazir Firdaus or Klaus Klarskov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul; Reviewers: Saikat Biswas, Pritha Bhattacharjee, Kusal Das, Suman Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S.R., Gupta, O.D., Ghosh, A.K. et al. Genetic variations and epigenetic modulations in CYP genes: Implications in NSAID-treatment of arthritis patients. Nucleus 64, 331–342 (2021). https://doi.org/10.1007/s13237-021-00373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-021-00373-0

Keywords

Navigation