Skip to main content

Advertisement

Log in

Exploring environmental systems and processes through next-generation sequencing technologies: insights into microbial response to petroleum contamination in key environments

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Environmental degradation due to petroleum contamination is a widespread phenomenon and can cause irreparable damage to the ecosystem if not contained. Microbial bioremediation has been established as an ecologically and economically viable method for the restoration of environments afflicted with xenobiotic and anthropogenic pollution. Effective execution of bioremediation strategies however, require a thorough understanding of the resident microbial community structure and function along with critical environmental factors. Recent innovative advances such as massively parallel sequencing, coupled with the development of robust bioinformatics tools have provided critical insights into the process of microbial bioremediation in the environment through elucidation of microbial community structures in uncontaminated and contaminated and/or bioaugmented systems with unprecedented efficiency and reproducibility. Aided by next-generation sequencing applications like metagenomics, metatranscriptomics and metagenomic shotgun sequencing, microbiologists have been able to investigate microbial responses to oil pollution with unparalleled completeness, even from extreme environments. The elucidation of the contribution of non-cultivable but viable microbes in oil contaminated sites have furnished us with essential information about the complex microbial associations and interdependencies that are required to facilitate effective remediation of contaminated environments. The current review focuses on microbial responses to oil contamination in various key environments unraveled through the use of NGS technologies, the characteristic features of such responses, and identification of critical factors necessary to facilitate efficient and systemic bioremediation of these polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S, et al. Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome. 2013;56:612–8.

    Article  CAS  PubMed  Google Scholar 

  2. An D, Caffrey SM, Soh J, Agrawal A, Brown D, Budwill K, et al. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol. 2013;47:10708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andreote FD, Jimenez DJ, Chaves D, Dias AC, Luvizotto DM, Dini-Andreote F, et al. The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE. 2012;7:e38600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakken LR. Culturable and non-culturable bacteria in soil. In: van Elsas JD, Trevor JT, Wellington EMH, editors. Modern soil microbiology. New York: Marcel Dekker; 1997. p. 47–61.

    Google Scholar 

  5. Basak P, Majumder NS, Nag S, Bhattacharyya A, Roy D, Chakraborty A, et al. Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microb Ecol. 2015;69:500–11.

    Article  PubMed  Google Scholar 

  6. Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 2013;7:1200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brito EM, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, et al. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol. 2006;157:752–62.

    Article  CAS  PubMed  Google Scholar 

  8. Chakraborty A, Bera A, Mukherjee A, Basak P, Khan I, Mondal A, et al. Changing bacterial profile of Sundarbans, the world heritage mangrove: impact of anthropogenic interventions. World J Microbiol Biotechnol. 2015;31:593–610.

    Article  CAS  PubMed  Google Scholar 

  9. dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, et al. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE. 2011;6:e16943.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gonzalez-Acosta B, Bashan Y, Hernandez-Saavedra NY, Ascencio F, Cruz-Aguero G. Seasonal seawater temperature as the major determinant for populations of culturable bacteria in the sediments of an intact mangrove in an arid region. FEMS Microbiol Ecol. 2006;55:311–21.

    Article  CAS  PubMed  Google Scholar 

  11. Guo J, Peng Y, Ni BJ, Han X, Fan L, Yuan Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Factories. 2015;14:33.

    Article  Google Scholar 

  12. Hara A, Syutsubo K, Harayama S. Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol. 2003;5:746–53.

    Article  CAS  PubMed  Google Scholar 

  13. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science. 2010;330:204–8.

    Article  CAS  PubMed  Google Scholar 

  14. He Y, Feng X, Fang J, Zhang Y, Xiao X. Metagenome and metatranscriptome revealed a highly active and intensive sulfur cycle in an oil-immersed hydrothermal chimney in Guaymas Basin. Front Microbiol. 2015;6:1236.

    PubMed  PubMed Central  Google Scholar 

  15. Joshi MN, Dhebar SV, Dhebar SV, Bhargava P, Pandit AS, Patel RP, et al. Metagenomic approach for understanding microbial population from petroleum muck. Genome Announc. 2014;2(3):e0053314.

    Article  Google Scholar 

  16. Jurkowski A, Reid AH, Labov JB. Metagenomics: a call for bringing a new science into the classroom (while it’s still new). CBE Life Sci Educ. 2007;6:260–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, et al. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol. 2013;4:50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater. 2016;317:169–79.

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Zhao Q, Boufadel MC, Venosa AD. A universal nutrient application strategy for the bioremediation of oil-polluted beaches. Mar Pollut Bull. 2007;54:1146–61.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Liu J. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. MicrobiologyOpen. 2013;2:492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marcial Gomes NC, Borges LR, Paranhos R, Pinto FN, Mendonca-Hagler LC, Smalla K. Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol. 2008;66:96–109.

    Article  PubMed  Google Scholar 

  22. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J, et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J. 2014;8:1464–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Penner TJ, Foght JM. Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can J Microbiol. 2010;56:459–70.

    Article  CAS  PubMed  Google Scholar 

  24. Ramos-Padron E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, et al. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol. 2011;45:439–46.

    Article  CAS  PubMed  Google Scholar 

  25. Shankar S, Kansrajh C, Dinesh MG, Satyan RS, Kiruthika S, Tharanipriya A. Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. Int J Environ Sci Technol. 2014;11:367–76.

    Article  CAS  Google Scholar 

  26. Sun W, Dong Y, Gao P, Fu M, Ta K, Li J. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: implications for active petroleum-degrading capacity. J Microbiol. 2015;53:371–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AA, Grotenhuis T, et al. Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol. 2013;79:619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan B, Dong X, Sensen CW, Foght J. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome. 2013;56:599–611.

    Article  CAS  PubMed  Google Scholar 

  29. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.

    Article  CAS  PubMed  Google Scholar 

  30. Widdel F, Knittel K, Galushko A. Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis K, Mcgenity T, Van Der Meer J, DeLorenzo V, editors. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer; 2010. p. 1997–2021.

    Chapter  Google Scholar 

  31. Yang S, Wen X, Zhao L, Shi Y, Jin H. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China–Russia Crude Oil Pipeline route. PLoS ONE. 2014;9:e96552.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yergeau E, Maynard C, Sanschagrin S, Champagne J, Juck D, Lee K, et al. Microbial community composition, functions, and activities in the Gulf of Mexico 1 year after the deepwater horizon accident. Appl Environ Microbiol. 2015;81:5855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yergeau E, Sanschagrin S, Beaumier D, Greer CW. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS ONE. 2012;7:e30058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 2007;5:e16.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature. 1999;401:266–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research work was supported by the NER TWINNING project (Grant ID: BT/306/NE/TBP/2012 dated 6/12/2012 from the Department of Biotechnology, Government of India). A.M. was supported by the CSIR/UGC-NET fellowship from the UGC, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubajyoti Chattopadhyay.

Additional information

This article is based on the presentation made during the 17th All India Congress of Cytology and Genetics and International Symposium on “Exploring Genomes: The New Frontier” held at CSIR-Indian Institute of Chemical biology, Kolkata in collaboration with Archana Sharma Foundation of Calcutta during December 22–24, 2015.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Chattopadhyay, D. Exploring environmental systems and processes through next-generation sequencing technologies: insights into microbial response to petroleum contamination in key environments. Nucleus 60, 175–186 (2017). https://doi.org/10.1007/s13237-016-0190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-016-0190-3

Keywords

Navigation