Skip to main content
Log in

Effect of β-Chain Alignment Degree on the Performance of Piezoelectric Nanogenerator Based on Poly(Vinylidene Fluoride) Nanofiber

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This work demonstrated the effect of the β-chain alignment degree on piezoelectric nanogenerator (PNG) performance. A simple, safe and low-cost fast-centrifugal spinning technique was used to produce self-poled poly(vinylidene fluoride) (PVDF) nanofiber. PNG based on acetone-prepared PVDF fibers, with high β-chain alignment, generated output open-circuit voltage (VOC) and short-circuit current (ISC) five times higher than the film counterpart. In addition, the fibers showed a remarkable increase in β-chain alignment degree as the ratio of N,N-dimethylformamide (DMF) solvent increased. The optimum nanofiber with the highest β-chain alignment degree, β-fraction and piezoelectric charge coefficient of 0.93, 91.8% and -120 pC.N was obtained, respectively. PNG based on the optimum fiber displayed the highest VOC, ISC and power density of 14 V, 1.4 µA and 6.7 µWcm−2, respectively. This performance is greater than any PNG made from electrospun PVDF fiber. The excellent performance of the fabricated PNGs was strongly related to the high alignment degree of β-chains parallel along the fiber axis. In addition, due to low Young’s modulus (1.63 MPa) of the optimum fibers, the related lead-free PNG is sensitive to small movements and can be used in wearable and implanted medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sivaraj, K. P. Abhilash, B. Nalini, P. Perumal, K. Somasundaram, and P. C. Selvin, Macromol. Res., 28, 739 (2020).

    Article  CAS  Google Scholar 

  2. B. K. Panigrahi, D. Sitikantha, A. Bhuyan, H. S. Panda, and K. Mohanta, Mater. Today Proc., 41, 335 (2019).

    Article  Google Scholar 

  3. K. Mistewicz, M. Jesionek, H. J. Kim, S. Hajra, M. Kozioł, Ł. Chrobok, and X. Wang, Ultrason. Sonochem., 78, 105718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Hajra, M. Sahu, D. Oh, and H. J. Kim, Ceram. Int., 47, 15695 (2021).

    Article  CAS  Google Scholar 

  5. V. Vivekananthan, N. R. Alluri, Y. Purusothaman, A. Chandrasekhar, and S. J. Kim, Nanoscale, 9, 15122 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. M. Sahu, S. Hajra, K. Lee, P. Deepti, K. Mistewicz, and H. J. Kim, Crystals 11, 85 (2021).

    Article  CAS  Google Scholar 

  7. J. H. Lee, S. J. Kim, J. S. Park, and J. H. Kim, Macromol. Res., 24, 909 (2016).

    Article  Google Scholar 

  8. P. Dhatarwal and R. J. Sengwa, Macromol. Res., 27, 1009 (2019).

    Article  CAS  Google Scholar 

  9. H. Jeong, S. Baek, S. Han, H. Jang, T. K. Rockson, and H. S. Lee, Macromol. Res., 26, 493 (2018).

    Article  CAS  Google Scholar 

  10. W. Xia, M. Xie, X. Feng, L. Chen, and Y. Zhao, Macromol. Res., 26, 1225 (2018).

    Article  CAS  Google Scholar 

  11. K. Maity, S. K. Ghosh, M. Xie, C. R. Bowen, and D. Mandal, Design of Flexible Piezoelectric-Pyroelectric Nanogenerator for Self-powered Wearable Sensor, in AIP Conference Proceedings, American Institute of Physics Inc., 2019, Vol. 2115.

  12. Tamil, W. A. D. M. Jayathilaka, A. Hilaal, and S. Ramakrishna, Int. J. Nanosci, 19, (2020).

  13. A. Bae, Compos. Part B: Eng., 99, 112 (2016).

    Article  CAS  Google Scholar 

  14. M. Baniasadi, Z. Xu, S. Moreno, S. Daryadel, J. Cai, M. Naraghi, and M. Minary-Jolandan, Polymer 118, 223 (2017).

    Article  CAS  Google Scholar 

  15. X. Chen, J.-K. Tseng, I. Treufeld, M. Mackey, D. E. Schuele, R. Li, M. Fukuto, E. Baer, and L. Zhu, J. Mater. Chem. C, 5, 10417 (2017).

    Article  CAS  Google Scholar 

  16. X. Bi, S. Song, and S. Sun, Macromol. Res., 25, 1163 (2017).

    Article  CAS  Google Scholar 

  17. H. H. Chang, L. K. Chang, C. D. Yang, D. J. Lin, and L. P. Cheng, Polymer, 115, 164 (2017).

    Article  CAS  Google Scholar 

  18. M. C. Branciforti, V. Sencadas, S. Lanceros-Mendez, and R. Gregorio, J. Polym. Sci., Part B: Polym. Phys., 45, 2793 (2007).

    Article  CAS  Google Scholar 

  19. X. Chen, Y. Song, Z. Su, H. Chen, X. Cheng, J. Zhang, M. Han, and H. Zhang, Nano Energy, 38, 43 (2017).

    Article  CAS  Google Scholar 

  20. P. Sathiyanathan, A. A. Prabu, and K. J. Kim, Macromol. Res., 24, 670 (2016).

    Article  CAS  Google Scholar 

  21. P. Sathiyanathan, D. M. Dhevi, A. A. Prabu, and K. J. Kim, Macromol. Res., 27, 743 (2019).

    Article  CAS  Google Scholar 

  22. Y. Huan, X. Zhang, J. Song, Y. Zhao, T. Wei, G. Zhang, and X. Wang, Nano Energy, 50, 62 (2018).

    Article  CAS  Google Scholar 

  23. K. Ibtehaj, M. H. H. Jumali, and S. Al-Bati, Polymer, 208, 122956 (2020).

    Article  CAS  Google Scholar 

  24. S. Maji, P. K. Sarkar, L. Aggarwal, S. K. Ghosh, D. Mandal, G. Sheet, and S. Acharya, Phys. Chem. Chem. Phys., 17, 8159 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. K. Tashiro and M. Kobayashi, Spectrochim. Acta A, 50, 1573 (1994).

    Article  Google Scholar 

  26. B. Weng, F. Xu, G. Garza, M. Alcoutlabi, A. Salinas, and K. Lozano, Polym. Eng. Sci., 55, 81 (2015).

    Article  CAS  Google Scholar 

  27. W. H. Liew, M. S. Mirshekarloo, S. Chen, K. Yao, F. E. H. Tay, Sci. Rep. 5, 09790 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  28. L. Ren, V. Pandit, J. Elkin, T. Denman, J. A. Cooper and S. P. Kotha, Nanoscale, 5, 2337 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. A. A. Conte, K. Shirvani, H. Hones, A. Wildgoose, Y. Xue, R. Najjar, X. Hu, W. Xue, and V. Z. Beachley, Polymer 171, 192 (2019).

    Article  CAS  Google Scholar 

  30. P. Adhikary and D. Mandal, Phys. Chem. Chem. Phys., 19, 17789 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. S. Jana, S. Garain, S. Sen, and D. Mandal, Phys. Chem. Chem. Phys., 17, 17429 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. M. Pusty, L. Sinha, and P. M. Shirage, New J. Chem., 43, 284 (2019).

    Article  CAS  Google Scholar 

  33. C. Li, M. Boban, S. A. Snyder, S. P. R. Kobaku, G. Kwon, G. Mehta, and A. Tuteja, Adv. Funct. Mater., 26, 6121 (2016).

    Article  CAS  Google Scholar 

  34. N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, D. V. Bayramol, and E. Siores, Energy Environ. Sci., 7, 1670 (2014).

    Article  CAS  Google Scholar 

  35. S. K. Karan, R. Bera, S. Paria, A. K. Das, S. Maiti, A. Maitra, and B. B. Khatua, Adv. Energy Mater., 6, 1601016 (2016).

    Article  Google Scholar 

  36. P. Adhikary, S. Garain, and D. Mandal, Phys. Chem. Chem. Phys., 17, 7275 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. A. A. Prabu, J. S. Lee, K. J. Kim, and H. S. Lee, Vib. Spectrosc., 41, 1 (2006).

    Article  CAS  Google Scholar 

  38. L. Andrews and G. L. Johnson, J. Phys. Chem., 88, 425 (1984).

    Article  CAS  Google Scholar 

  39. S. Petit and J. Madejova, in Developments in Clay Science, Elsevier, Amsterdam, 2013, Vol. 5, Chap. 2.7, pp 213–231.

    Google Scholar 

  40. U. W. Gedde and M. S. Hedenqvist, Fundamental Polymer Science, 2nd ed., Springer International Publishing, Cham, Switzerland, 2019.

    Book  Google Scholar 

  41. N. R. Forde, L. J. Butler, and S. A. Abrash, J. Chem. Phys., 110, 8954 (1999).

    Article  CAS  Google Scholar 

  42. J. Eggers, Mod. Phys., 69, 865 (1997).

    Article  CAS  Google Scholar 

  43. S. You, L. Zhang, J. Gui, H. Cui, and S. Guo, Micromachines, 10, 302 (2019).

    Article  PubMed Central  Google Scholar 

  44. P. Hu, D. Zheng, C. Zhao, Y. Zhang, and J. Niu, Mater. Lett., 218, 71 (2018).

    Article  CAS  Google Scholar 

  45. Y. K. Fuh, Z. M. Huang, B. S. Wang, and S. C. Li, Nanoscale Res. Lett., 12, 44 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. N. D. Nam and W. Moon, J. Sens. Sci. Technol., 28, 205 (2019).

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Universiti Kebangsaan Malaysia, Malaysia, grant number (GP-2019-K006551) and by researchers supporting project number (RSP-2021/348), King Saud University, Riyadh, Saudi Arabia. In addition, the authors are grateful for the technical assistance provided by Mr. Mohammed Zoheer Khatatbeh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khatatbeh Ibtehaj or Mohammad Hafizuddin Hj. Jumali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibtehaj, K., Jumali, M.H.H., Al-Bati, S. et al. Effect of β-Chain Alignment Degree on the Performance of Piezoelectric Nanogenerator Based on Poly(Vinylidene Fluoride) Nanofiber. Macromol. Res. 30, 172–182 (2022). https://doi.org/10.1007/s13233-022-0020-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0020-1

Keywords

Navigation