Skip to main content
Log in

Facile Preparation of PANI-Sr Composite Flexible Thin Film for Ammonia Sensing at Very Low Concentration

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Conducting polymers, are still fascinating the industrial applications area since their discovery, particularly in the field of chemical sensors. For this purpose, flexible and highly sensitive based polyaniline-strontium (PANI-Sr) films were successfully prepared via a facile in-situ chemical polymerization process of aniline in presence of Sr (NO3)2 deposited on biaxially oriented polyethylene terephthalate (BOPET) flexible substrates with prior surface treatment using (3-aminopropyl) trimethoxysilane. Spectral, structural, morphological, and surface behavior characterizations were carried out using Fourier transform infrared spectroscopy (FTIR-ATR), X-ray fluorescence (XRF), raman spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and surface wettability. The electrical conductivity was measured by the usual four probes technique. Noticeably, the prepared films with Sr (NO3)2 ∼2 M have shown a highest conductivity of 0.3 S·cm−1 over the other samples. This conductivity feature has been exploited to test the sensitivity and the performances of the obtained films toward different type of gas. The PANI-Sr sensor demonstrates an outstanding selectivity and an excellent sensitivity towards the ammonia (498% response to 100 ppm) within a detection limit of 0.013 ppm, and a fast response/recovery time (1 s /42 s) toward 50 ppm at room temperature. The PANI-Sr sensor also showed a good reproducibility during five cycles. The interaction mechanism of PANI-Sr sensor film and the NH3 vapors was discussed basing on the impedance spectroscopy analysis results. The obtained results highlight the paramount role played by the strontium particle in enhancing the ammonia detection performances, when they are imbedded into PANI matrix through facile preparation process, and they emphasize their prominence over the similar study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kulkarni, Y. Navale, S. Navale, F. Stadler, N. Ramgir, and V. Patil, Sens. Actuator B-Chem., 288, 279 (2019).

    Article  CAS  Google Scholar 

  2. H.-H. Choi, J. Lee, K.-Y. Dong, B.-K. Ju, and W. Lee, Macromol. Res., 20, 143 (2012).

    Article  CAS  Google Scholar 

  3. S. Ahmadzadeh, M. Yoosefian, and M. Rezayi, Int. J. Environ. Anal. Chem., 99, 1 (2019).

    CAS  Google Scholar 

  4. S. Avazpour, A. Pardakhty, E. Nabatian, and S. Ahmadzadeh, Bionanoscience, 10, 1 (2020).

    Article  Google Scholar 

  5. S. Ahmadzadeh, M. Rezayi, E. Faghih-Mirzaei, M. Yoosefian, and A. Kassim, Electrochim. Acta, 178, 580 (2015).

    Article  CAS  Google Scholar 

  6. S. Badakhshan, S. Ahmadzadeh, A. Mohseni-Bandpei, M. Aghasi, and A. Basiri, BMC Chem., 13, 1 (2019).

    Article  CAS  Google Scholar 

  7. C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, and Y. Jiang, Sens. Actuator B-Chem., 261, 587 (2018).

    Article  CAS  Google Scholar 

  8. F. Merdj, A. Mekki, D. Guettiche, B. Mettai, Z.-B.-D. Sayah, Z. Safidine, A. Abdi, R. Mahmoud, and M.-M. Chehimi, Macromol. Res., 26, 511 (2018).

    Article  CAS  Google Scholar 

  9. T. Wu, D. Lv, W. Shen, W. Song, and R. Tan, Sens. Actuator B-Chem., 316, 128198 (2020).

    Article  CAS  Google Scholar 

  10. Y. Zhang, J. Zhang, Y. Jiang, Z. Duan, B. Liu, Q. Zhao, S. Wang, Z. Yuan, and H. Tai, Sens. Actuator B-Chem., 319, 128293 (2020).

    Article  CAS  Google Scholar 

  11. D. Zhang, C. Jiang, P. Li, and Y. E. Sun, ACS Appl. Mater. Interfaces, 9, 6462 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. L. Kumar, I. Rawal, A. Kaur, and S. Annapoorni, Sens. Actuator B-Chem., 240, 408 (2017).

    Article  CAS  Google Scholar 

  13. D. Zhang, Z. Yang, P. Li, M. Pang, and Q. Xue, Nano Energy, 65, 103974 (2019).

    Article  CAS  Google Scholar 

  14. R. Roto, A. Rianjanu, A. Rahmawati, I.-A. Fatyadi, N. Yulianto, N. Majid, I. Syamsu, H.-S. Wasisto, and K. Triyana, ACS Appl. Nano Mater., 3, 5687 (2020).

    Article  CAS  Google Scholar 

  15. S. Zhang, J. Wang, N.-L. Torad, W. Xia, M.-A. Aslam, Y.-V. Kaneti, Z. Hou, Z. Ding, B. Da, and A. Fatehmulla, Small, 16, 1901718 (2020).

    Article  CAS  Google Scholar 

  16. G. Long, Y. Guo, W. Li, Q. Tang, X. Zu, J. Ma, B. Du, and Y. Fu, Microelectron. Eng., 222, 111201 (2020).

    Article  CAS  Google Scholar 

  17. Y.-J. Guo, G.-D. Long, Y.-L. Tang, J.-L. Wang, Q.-B. Tang, X.-T. Zu, J.-Y. Ma, B. Du, H. Torun, and Y.-Q. Fu, Smart Mater. Struct., 29, 095003 (2020).

    Article  CAS  Google Scholar 

  18. J. Chao, Y. Chen, S. Xing, D. Zhang, and W. Shen, Sens. Actuator B-Chem., 298, 126927 (2019).

    Article  CAS  Google Scholar 

  19. Y. Li, M. Jiao, H. Zhao, and M. Yang, Sens. Actuator B-Chem., 264, 285 (2018).

    Article  CAS  Google Scholar 

  20. H. Varudkar, G. Umadevi, P. Nagaraju, J. Dargad, and V. Mote, J. Mater. Sci. Mater. Electron., 31, 12579 (2020).

    Article  CAS  Google Scholar 

  21. A. Mekki, Z. Ait-Touchente, S. Samanta, A. Singh, R. Mahmoud, M.-M. Chehimi, and D.-K. Aswal, Macromol. Chem. Phys., 217, 1136 (2016).

    Article  CAS  Google Scholar 

  22. L. Li, Y. Guo, C. Zhao, and L. Song, Macromol. Res., 26, 592 (2018).

    Article  CAS  Google Scholar 

  23. S.-A. Alqarni, M.-A. Hussein, A.-A. Ganash, and A. Khan, Bionanoscience, 10, 351 (2020).

    Article  Google Scholar 

  24. R. Brina, G.-E. Collins, P.-A. Lee, and N.-R. Armstrong, Anal. Chem., 62, 2357 (1990).

    Article  CAS  Google Scholar 

  25. K.-R. Devi, G. Selvan, M. Karunakaran, I.-L.-P. Raj, V. Ganesh, and S. AlFaify, Mater. Sci. Semicond. Process, 119, 105117 (2020).

    Article  CAS  Google Scholar 

  26. V.-S. Bhati, M. Hojamberdiev, and M. Kumar, Energy Rep., 6, 46 (2020).

    Article  Google Scholar 

  27. S. Wang, Y. Kang, L. Wang, H. Zhang, Y. Wang, and Y. Wang, Sens. Actuator B-Chem., 182, 467 (2013).

    Article  CAS  Google Scholar 

  28. U. Male and B.-K. Shin, Macromol. Res., 25, 1121 (2017).

    Article  CAS  Google Scholar 

  29. S. Kulkarni, Y. Navale, S. Navale, F. Stadler, and V. Patil, J. Mater. Sci. Mater. Electron., 30, 8371 (2019).

    Article  CAS  Google Scholar 

  30. L. Li, H. Liu, B. Li, Y. Guo, L. Qing, and B. Wang, Macromol. Res., 28, 455 (2019).

    Article  CAS  Google Scholar 

  31. S. Ameen, M. Song, D.-G. Kim, Y.-B. Im, H.-K. Seo, Y.-S. Kim, and H.-S. Shin, Macromol. Res., 20, 30 (2012).

    Article  CAS  Google Scholar 

  32. C.-T. Lee and Y.-S. Wang, J. Alloys Compd., 789, 693 (2019).

    Article  CAS  Google Scholar 

  33. Y. Xiong, H. Li, X. Li, T. Guo, L. Zhu, and Q. Xue, Nanotechnology, 30, 135501 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. M.-H. Suhail, O.-G. Abdullah, and G.-A. Kadhim, J. Sci. Adv. Mater. Devices, 4, 143 (2019).

    Article  Google Scholar 

  35. A. Mekki, N. Joshi, A. Singh, Z. Salmi, P. Jha, P. Decorse, S. Lau-Truong, R. Mahmoud, M.-M. Chehimi, and D.-K. Aswal, Org. Electron., 15, 71 (2014).

    Article  CAS  Google Scholar 

  36. R. De Barros, M. Areias, and W. De Azevedo, Synth. Met., 160, 61 (2010).

    Article  CAS  Google Scholar 

  37. N.-K. Jangid, S. Jadoun, and N. Kaur, Eur. Polym. J., 125, 109485 (2020).

    Article  CAS  Google Scholar 

  38. S.-B. Kondawar, P.-T. Patil, and S.-P. Agrawal, Adv. Mater. Lett., 5, 389 (2014).

    Article  CAS  Google Scholar 

  39. Y.-J. Li, M. Xu, J.-Q. Feng, and Z.-M. Dang, Appl. Phys. Lett., 89, 072902 (2006).

    Article  CAS  Google Scholar 

  40. B. Mettai, A. Mekki, F. Merdj, Z.-B.-D. Sayah, K.-M. Soumia, Z. Safiddine, R. Mahmoud, and M.-M. Chehimi, J. Polym. Res., 25, 95 (2018).

    Article  CAS  Google Scholar 

  41. A. Mekki, S. Samanta, A. Singh, Z. Salmi, R. Mahmoud, M.-M. Chehimi, and D.-K. Aswal, J. Colloid Interface Sci., 418, 185 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. M. Trchová and J. Stejskal, Pure Appl. Chem., 83, 1803 (2011).

    Article  CAS  Google Scholar 

  43. Y. Zhang, C. Dou, W. Wang, Q. Wang, and N. Feng, Macromol. Res., 24, 663 (2016).

    Article  CAS  Google Scholar 

  44. D. Bandgar, S. Navale, S. Nalage, R. Mane, F. Stadler, D. Aswal, S. Gupta, and V. Patil, J. Mater. Chem. C, 3, 9461 (2015).

    Article  CAS  Google Scholar 

  45. D. Bandgar, S. Navale, Y. Navale, S. Ingole, F. Stadler, N. Ramgir, D. Aswal, S. Gupta, R. Mane, and V. Patil, Mater. Chem. Phys., 189, 191 (2017).

    Article  CAS  Google Scholar 

  46. V. Stefov, V. Koleva, A. Janevski, G. Bogoeva-Gaceva, and M. Najdoski, Spectrochim. Acta A Mol. Biomol. Spectrosc., 223, 117383 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. R. Seoudi, A. Shabaka, M. Kamal, E. Abdelrazek, and W.-H. Eisa, J. Mol. Struct., 1013, 156 (2012).

    Article  CAS  Google Scholar 

  48. W. Shao, R. Jamal, F. Xu, A. Ubul, and T. Abdiryim, Materials, 5, 1811 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  49. M. Xie and T. Zhang, J. Mater. Sci., 55, 3974 (2020).

    Article  CAS  Google Scholar 

  50. F. Ahmadi Tabar, A. Nikfarjam, N. Tavakoli, J. Nasrollah Gavgani, M. Mahyari, and S.-G. Hosseini, Microchim. Acta, 187, 1 (2020).

    Article  CAS  Google Scholar 

  51. S. Kulkarni, Y. Navale, S. Navale, N. Ramgir, A. Debnath, S. Gadkari, S. Gupta, D. Aswal, and V. Patil, Org. Electron., 45, 65 (2017).

    Article  CAS  Google Scholar 

  52. D. Bandgar, S. Navale, M. Naushad, R. Mane, F. Stadler, and V. Patil, RSC Adv., 5, 68964 (2015).

    Article  CAS  Google Scholar 

  53. A. Akbar, M. Das, and D. Sarkar, Sens. Actuator A-Phys., 310, 112071 (2020).

    Article  CAS  Google Scholar 

  54. G. Marimuthu, G. Palanisamy, T. Pazhanivel, G. Bharathi, M.-M. Cristopher, and K. Jeyadheepan, J. Mater. Sci. Mater. Electron., 31, 1951 (2020).

    Article  CAS  Google Scholar 

  55. V.-S. de Souza, H.-O. da Frota, and E.-A. Sanches, J. Mol. Struct., 1153, 20 (2018).

    Article  CAS  Google Scholar 

  56. C. Abdelmounaïm, Z. Amara, A. Maha, and D. Mustapha, Mater. Sci. Semicond. Process, 43, 214 (2016).

    Article  CAS  Google Scholar 

  57. W. Wu, J. Wu, J.-H. Kim, and N.-Y. Lee, Lab Chip, 15, 2819 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. S. Abdulla, T.-L. Mathew, and B. Pullithadathil, Sens. Actuator B-Chem., 221, 1523 (2015).

    Article  CAS  Google Scholar 

  59. A.-B. Nagare, N.-S. Harale, S.-S. Mali, S.-S. Nikam, P.-S. Patil, C.-K. Hong, and A.-V. Moholkar, J. Mater. Sci. Mater. Electron., 30, 11878 (2019).

    Article  CAS  Google Scholar 

  60. O. Hamouma, N. Kaur, D. Oukil, A. Mahajan, and M.-M. Chehimi, Synth. Met., 258, 116223 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. Benhouhou is very grateful to Ecole Militaire polytechnique for providing here PhD scholarship granted under the order number 02/17/DRFPG/CMDT/EMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mekki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhouhou, S., Mekki, A., Ayat, M. et al. Facile Preparation of PANI-Sr Composite Flexible Thin Film for Ammonia Sensing at Very Low Concentration. Macromol. Res. 29, 267–279 (2021). https://doi.org/10.1007/s13233-021-9034-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9034-3

Keywords

Navigation