Skip to main content
Log in

Enhancement in Surface Property via In-Mold Coating Process

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We investigated the in-mold coating process that can not only offer a superior surface quality of molded parts but also reduce environmentally harmful chemical releases compared with conventional coating processes. Polycarbonate (PC) plates were first fabricated via injection molding and then a coating layer was generated on the top of the plate in the mold cavity. The in-mold coating process was simulated numerically. To look into the effect of the coating, we prepared three different samples including pure, bar-coated, and in-mold coated PCs and analyzed their physicochemical properties. It turned out the samples prepared using the in-mold coating process had enhanced surface properties such as surface modulus, hardness and pencil hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Rerferences

  1. H. J. Oh, J. H. Park, S. J. Lee, B. I. Kim, Y. S. Song, and J. R. Youn, Lab Chip, 11, 3999 (2011).

    Article  CAS  Google Scholar 

  2. V. Piotter, K. Mueller, K. Plewa, R. Ruprecht, and J. Hausselt, Microsyst. Technol., 8, 387 (2002).

    Article  CAS  Google Scholar 

  3. N. R. Subramanian, T. T. Lin, and Y. A Seng, Mechatronics, 15, 111 (2005).

    Article  Google Scholar 

  4. B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, J. Mater. Proc. Technol., 183, 284 (2007).

    Article  CAS  Google Scholar 

  5. H. Oktem, T. Erzurumlu, and I. Uzman, Mater. Design, 28, 1271 (2007).

    Article  CAS  Google Scholar 

  6. H. J. Oh and Y. S. Song, RSC Adv., 7, 14302 (2017).

    Article  CAS  Google Scholar 

  7. M. C. Huang and C. C. Tai, J. Mater. Proc. Technol., 110, 1 (2001).

    Article  CAS  Google Scholar 

  8. U. M. Attia, S. Marson, and J. R. Alcock, Microfluid. Nanofluid., 7, 1 (2009).

    Article  CAS  Google Scholar 

  9. F. C. Krebs, Sol. Energy Mater. Sol. Cells, 93, 394 (2009).

    Article  CAS  Google Scholar 

  10. P. R Chalker, S. J. Bull, and D. S. Rickerby, Mater. Sci. Eng. A, 140, 583 (1991).

    Article  Google Scholar 

  11. E. Teunou and D. Poncelet, J. Food Eng., 53, 325 (2002).

    Article  Google Scholar 

  12. P. NguyenThi, A. Kwon, Y.-E. Yoo, and J. S. Yoon, J. Mech. Sci. Technol., 27, 2967 (2013).

    Article  Google Scholar 

  13. J. M. Castro and R. M. Griffith, Polym. Eng. Sci., 30, 677 (1990).

    Article  Google Scholar 

  14. W. Rogers, C. Hoppins, Z. Gombos, and J. Summerscales, J. Clean Prod., 70, 282 (2014).

    Article  CAS  Google Scholar 

  15. H. Hamada and H. Tsunasawa, J. Appl. Polym. Sci., 60, 353 (1996).

    Article  CAS  Google Scholar 

  16. B. Ozcelik and I. Sonat, Mater. Design, 30, 367 (2009).

    Article  CAS  Google Scholar 

  17. B.-K. Lee, D. S. Kim, and T. H. Kwon, Microsyst. Technol., 10, 531 (2004).

    Article  CAS  Google Scholar 

  18. M. Barletta, M. Puopolo, A. Gisario, and S. Vesco, Prog. Org. Coat., 101, 161 (2016).

    Article  CAS  Google Scholar 

  19. D. K. Hwang, J. H. Moon, Y. G. Shul, K. T. Jung, D. H. Kim, and D. W. Lee, J. Sol-Gel Sci. Technol., 26, 783 (2003).

    Article  CAS  Google Scholar 

  20. M. Barletta, M. Puopolo, G. Rubino, V. Tagliaferri, and S. Vesco, Prog. Org. Coat., 90, 178 (2016).

    Article  CAS  Google Scholar 

  21. C. Y. Wang, Z. X. Shen, and J. Z. Zheng, Appl. Spectrosc, 54, 209 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seok Song.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the GRRC program of Gyeonggi Province (GRRC Dankook 2016-B03). In addition, this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1A5A1024127). This research has been done by the author(s) working at the Department of Fiber Convergence Materials Engineering of Dankook University. Department of Fiber Convergence Materials Engineering was supported by the Research-Focused Department Promotion Project as a part of the University Innovation Support Program 2020 to Dankook University.The authors are grateful for the support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, C., Song, Y.S. Enhancement in Surface Property via In-Mold Coating Process. Macromol. Res. 29, 185–190 (2021). https://doi.org/10.1007/s13233-021-9019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9019-2

Keywords

Navigation