Skip to main content
Log in

Magnetically-Programmable Cylindrical Microparticles by Facile Reaping Method

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Various shapes of magnetically-programmed polyethylene glycol (PEG)-based particles with Fe3O4 blocks were harvested by a facile reaping method. Specifically, elastic PEG-based particles can be obtained by applying uniform shear stress onto the array of densely-populated PEG/Fe3O4 microstructures. A simple theory based on geometric and material properties was developed based on experimental observations to produce highly uniform cylindrical microparticles in a cost-effective manner. We analyzed the force balance of hairy architectures to explain the uniform cutting process, which is based on operating zones with various geometries and material elasticity. Here, the alignments of mono-/multi-dispersed iron oxide (Fe3O4) in microparticles can be tunable by changing the external magnetic field during replications. Furthermore, the collective reversible motions of different magneto-responsive PEG particles were observed when the external magnetic field was controlled, wherein such behaviors can be applied in potential medial applications such as controllable drug-delivery or microrobotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Chen, S. C. Bae, and S. Granick, Nature, 469, 381 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Q. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten, and S. Granick, Science, 331, 199 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. R. M. Erb, H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, Nature, 457, 999 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. S. Jiang and S. Granick, Langmuir, 25, 8915 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, and J. Bibette, Nature 455, 380 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. S. Bhaskar, J. Hitt, S. W. L. Chang, and J. Lahann, Angew. Chem. Int. Ed., 48, 4452 (2009).

    Article  Google Scholar 

  7. Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, J. Am. Chem. Soc., 128, 9408 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. U. K. Cheang and M. J. Kim, Appl. Phys. Lett., 109, 034101 (2016).

    Article  CAS  Google Scholar 

  9. D. A. Canelas, K. P. Herlihy, and J. M. DeSimone, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1, 391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, Acc. Chem. Res., 44, 990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. H. Moon, A. J. Kim, J. C. Crocker, and S. Yang, Adv. Mater., 19, 2508 (2007).

    Article  CAS  Google Scholar 

  12. O. Cayre, V. N. Paunov, and O. D. Velev, J. Mater. Chem., 13, 2445 (2003).

    Article  CAS  Google Scholar 

  13. S. H. Kim, S. J. Jeon, G. R. Yi, C. J. Heo, J. H. Choi, and S. M. Yang, Adv. Mater., 20, 1649 (2008).

    Article  CAS  Google Scholar 

  14. B. M. Jun, F. Serra, Y. Xia, H. S. Kang, and S. Yang, ACS Appl. Mater. Interfaces, 8, 30671 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, J. Am. Chem. Soc., 128, 9408 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. M. M. Rahman, F. Montagne, H. Fessi, and A. Elaissari, Soft Matter, 7, 1483 (2011).

    Article  CAS  Google Scholar 

  17. M. Yoshida, K. H. Roh, S. Mandal, S. Bhaskar, D. Lim, H. Nandivada, and J. Lahann, Adv. Mater., 21, 4920 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 89, 341 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. J. Kim, W. A. Li, Y. Choi, S. A. Lewin, C. S. Verbeke, G. Dranoff, and D. J. Mooney, Nat. Biotechnol., 33, 64 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. L. Baraban, D. Makarov, R. Streubel, I. Monch, D. Grimm, S. Sanchez, and O. G. Schmidt, ACS Nano, 6(4), 3383 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. I. Gorelikov, L. M. Field, and E. Kumacheva, J. Am. Chem. Soc., 126, 15938 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. T. Nisisako and T. Torii, Adv. Mater., 19, 1489 (2007).

    Article  CAS  Google Scholar 

  23. H. Lee, J. Kim, J. Kim, S. E. Chung, S. E. Choi, and S. Kwon, Nat. Mater., 10, 747 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. A. K. Salem, P. C. Searson, and K. W. Leong, Nat. Mater., 2, 668 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Cho, J. H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, and D. J. Srolovitz, Proc. Natl. Acad. Sci., 111, 17390 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. S. Gangwal, A. Pawar, I. Kretzschmar, and O. D. Velev, Soft Matter, 6, 1413 (2010).

    Article  CAS  Google Scholar 

  27. G. Wu, H. Cho, D. A. Wood, A. D. Dinsmore, and S. Yang, J. Am. Chem. Soc., 139, 5095 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. S. V. Nikolov, P. D. Yeh, and A. Alexeev, ACS Macro Lett., 4, 84 (2014).

    Article  CAS  Google Scholar 

  29. H. W. Huang, M. S. Sakar, A. J. Petruska, S. Pané, and B. J. Nelson, Nat. Commun., 7, 12263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. L. Perry, K. G. Reuter, M. P. Kai, K. P. Herlihy, S. W. Jones, J. C. Luft, and J. M. DeSimone, Nano Lett., 12, 5304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. F. Xu, Y. Z. Chen, D. Wu, L. Z. Wu, C. H. Tung, and Q. Z. Yang, Angew. Chem. Int. Ed., 52, 9738 (2013).

    Article  CAS  Google Scholar 

  32. S. E. Gratton, M. E. Napier, P. A. Ropp, S. Tian, and J. M. DeSimone, Pharm. Res., 25, 2845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Y. Lee and S. Yang, Chem. Commun., 51, 1639 (2015).

    Article  CAS  Google Scholar 

  34. Y. Cho, J. H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, and D. J. Srolovitz, Proc. Natl. Acad. Sci., 111, 17390 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. M. Kim, S. W. Shin, C. W. Lim, J. Kim, S. H. Um, and D. Kim, Biomater. Sci., 5, 305 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. S. Belaïd, S. Laurent, M. Vermeersch, L. Vander Elst, D. Perez-Morga, and R. N. Muller, Nanotechnology, 24, 055705 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. S. Baik, Y. Park, T. J. Lee, S. H. Bhang, and C. Pang, Nature, 546, 396 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. J. Yang, S. Chen, and Y. Fang, Carbohydr. Polym., 75, 333 (2009).

    Article  CAS  Google Scholar 

  39. I. W. Hamley, Angew. Chem. Int. Ed., 42, 1692 (2003).

    Article  CAS  Google Scholar 

  40. C. Pang, T. I. Kim, W. G. Bae, D. Kang, S. M. Kim, and K. Y. Suh, Adv. Mater., 24, 475 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. C. Zhao, H. Andersen, B. Ozyilmaz, S. Ramaprabhu, G. Pastorin, and H. K. Ho, Nanoscale, 7, 18239 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. S. A. Soule and K. V. Cashman, J. Volcanol. Geotherm. Res., 129, 139 (2004).

    Article  CAS  Google Scholar 

  43. S. J. Choi, H. N. Kim, W. G. Bae, and K. Y. Suh, J. Mater. Chem., 21, 14325 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jungwook Kim or Changhyun Pang.

Additional information

Acknowledgments: This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C2806010017).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, H., Choi, Y., Kim, J. et al. Magnetically-Programmable Cylindrical Microparticles by Facile Reaping Method. Macromol. Res. 26, 1108–1114 (2018). https://doi.org/10.1007/s13233-018-6153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6153-6

Keywords

Navigation