Skip to main content
Log in

Transparent lamellar porous material and its greatly reduced dielectric constant

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

One trend for low dielectric materials is to reach low dielectric constant values at as low porosity as possible. In this work, a lamellar porous material was prepared by spin-coating of poly(vinyl alcohol) (PVA)/manganese dioxide (MnO2) nanosheet composited film, followed by cross-linking of PVA and removing nanosheets. FTIR, XRD and TGA measurement results demonstrate that the templates were almost completely removed. SEM image shows that the etched PVA film has a lamellar porous structure. Dielectric test results indicate that at the porosity of only 17.5%, the dielectric constant of porous PVA is reduced to approximately half that of neat cross-linked PVA. The serial model shows a good consistence with experimental dielectric constant value. This explains well the high efficiency of lamellar porous structure in reducing dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Volksen, R. D. Miller, and G. Dubois, Chem. Rev., 110, 56 (2010).

    Article  CAS  Google Scholar 

  2. M. Ree, J. W. Yoon, and K. Y. Heo, J. Mater. Chem., 16, 685 (2006).

    Article  CAS  Google Scholar 

  3. M. Seino, W. Wang, J. E. Lofgreen, D. P. Puzzo, T. Manabe, and G. A. Ozin, J. Am. Chem. Soc., 133, 18082 (2011).

    Article  CAS  Google Scholar 

  4. H. Zhang, Q. G. Du, J. Zhou, X. L. Zhang, H. T. Wang, and W. Zhong, Eur. Polym. J., 44, 1095 (2008).

    Article  Google Scholar 

  5. T. Fukumaru, T. Fujigaya, and N. Nakashima, Polym. Chem., 3, 369 (2012).

    Article  CAS  Google Scholar 

  6. G. D. Fu, E. T. Kang, Z. L. Yuan, K. G. Neoh, D. M. Lai, and A. C. H. Huan, Adv. Funct. Mater., 15, 315 (2005).

    Article  CAS  Google Scholar 

  7. Z. W. He, W. X. Sun, X. Q. Liu, D. Y. Xu, J. Gou, and Y. Y. Wang, Eur. Phys. J. B, 48, 463 (2005).

    Article  CAS  Google Scholar 

  8. I. Fisher, W. D. Kaplan, and M. Eizenberg, J. Appl. Phys., 95, 5762 (2004).

    Article  CAS  Google Scholar 

  9. J. J. Si, H. Ono, K. Uchida, S. Nozaki, and H. Morisaki, Appl. Phys. Lett., 79, 3140 (2001).

    Article  CAS  Google Scholar 

  10. H. J. Xia, G. P. Wan, F. Yang, J. S. Wang, and Q. Bai, Mater. Lett., 180, 19 (2016).

    Article  CAS  Google Scholar 

  11. S. Israel, I. Gurevitch, and M. S. Silverstein, Polymer, 72, 453 (2015).

    Article  CAS  Google Scholar 

  12. J. L. Jiang, Z. G. Chen, C. S. Duanmu, Y. X. Gu, J. Chen, and L. N. Ni, Mater. Lett., 132, 425 (2014).

    Article  CAS  Google Scholar 

  13. K. R. Reddy, K.-P. Lee, A. I. Gopalan, and A. M. Showkat, Polym. J., 38, 349 (2006)

    Article  CAS  Google Scholar 

  14. S. Alix, N. Follain, N. Tenn, B. Alexandre, S. Bourbigot, J. Soulestin, and S. Marais, J. Phys. Chem. C, 116, 4937 (2012).

    Article  CAS  Google Scholar 

  15. Z. Bartczak, A. Rozanski, and J. Richert, Eur. Polym. J., 61, 274 (2014).

    Article  CAS  Google Scholar 

  16. W. S. Tong, Y. H. Zhang, L. Yu, X. L. Luan, Q. An, Q. Zhang, F. Z. Lv, P. K. Chu, B. Shen, and Z. L. Zhang, J. Phys. Chem. C, 118, 10567 (2014).

    Article  CAS  Google Scholar 

  17. M. U. Khan, K. R. Reddy, T. Snguanwongchai, E. Haque, and V. G. Gomes, Colloid. Polym. Sci., 294, 1599 (2016).

    Article  CAS  Google Scholar 

  18. S. J. Han, H.-I. Lee, H. M. Jeong, B. K. Kim, A. V. Raghu, and K. R. Reddy, J. Macromol. Sci., Part B: Phys., 53, 1193 (2014).

    Article  CAS  Google Scholar 

  19. D. Rag Son, A. V. Raghu, K. R. Reddy, and H. M. Jeong, J. Macromol. Sci., Part B: Phys., 55, 1099 (2016).

    Article  CAS  Google Scholar 

  20. S. H. Choi, D. H. Kim, A. V. Raghu, K. R. Reddy, H.-I. Lee, K. S. Yoon, H. M. Jeong, and B. K. Kim, J. Macromol. Sci., Part B: Phys., 51, 197 (2012).

    Article  CAS  Google Scholar 

  21. M. Hassan, K. R. Reddy, E. Haque, A. I. Minett, and V. G. Gomes, J. Colloid Interface Sci., 410, 43 (2013).

    Article  CAS  Google Scholar 

  22. M. Hassan, K. R. Reddy, E. Haque, S. N. Faisal, and S. Ghasemi, Compos. Sci. Technol., 98, 1 (2014).

    Article  CAS  Google Scholar 

  23. Y. R. Lee, S. C. Kim, H.-i. Lee, H. M. Jeong, A. V. Raghu, K. R. Reddy, and B. K. Kim, Macromol. Res., 19, 66 (2011).

    Article  CAS  Google Scholar 

  24. Y. Ma, J. Luo, and S. L. Suib, Chem. Mater., 11, 1972 (1999).

    Article  CAS  Google Scholar 

  25. N. Sakai, Y. Ebina, K. Takada, and T. Sasaki, J. Phys. Chem. B, 109, 9651 (2005).

    Article  CAS  Google Scholar 

  26. H. Wang, J. J. Zhang, X. D. Hang, X. D. Zhang, J. F. Xie, B. C. Pan, and Y. Xie, Angew. Chem., Int. Ed., 54, 1195 (2015).

    Article  CAS  Google Scholar 

  27. H. B. Abdulrahman, K. Kolataj, P. Lenczewski, J. Krajczewski, and A. Kudelski, Appl. Surf. Sci., 388, 704 (2016).

    Article  CAS  Google Scholar 

  28. M. Cakici, R. R. Kakarla, and F. A. Marroquin, Chem. Eng. J., 309, 151 (2017).

    Article  CAS  Google Scholar 

  29. X. G. Li, G. B. McKenna, G. Miquelard-Garnier, A. Guinault, C. Sollogoub, G. Regnier, and A. Rozanski, Polymer, 55, 248 (2014).

    Article  CAS  Google Scholar 

  30. C. S. Boland, S. Barwich, U. Khan, and J. N. Coleman, Carbon, 99, 280 (2016).

    Article  CAS  Google Scholar 

  31. P. Das, S. Schipmann, J. Malho, B. L. Zhu, U. Klemradt, and A. Walther, ACS Appl. Mater. Interfaces, 5, 3738 (2013).

    Article  CAS  Google Scholar 

  32. A. Walther, I. Bjurhager, J. M. Malho, J. Ruokolainen, L. Berglund, and O. Ikkala, Angew. Chem. Int. Ed., 49, 6448 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yawen Huang or Junxiao Yang.

Additional information

Acknowledgments: This work was supported through grant from Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of Southwest University of Science and Technology (14tdfk03), and Innovation Team Project of Department of Science and Technology of Sichuan Province (16TD0014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhao, C., Huang, Y. et al. Transparent lamellar porous material and its greatly reduced dielectric constant. Macromol. Res. 25, 989–993 (2017). https://doi.org/10.1007/s13233-017-5141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5141-6

Keywords

Navigation