Skip to main content
Log in

Effects of liquid crystal-based formulation on transdermal delivery of retinyl palmitate and proliferation of epidermal cells

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Liquid crystal (LC) emulsions composed of multi-lamellar structures were formulated to enhance the percutaneous absorption of retinyl palmitate across skin barriers. The LC emulsions were prepared by hot process emulsification of an aqueous phase and an oil phase containing retinyl palmitate. Percutaneous absorption levels across synthetic membranes were determined by Franz cell diffusion study. The diffusional absorption level of the oil phase in the LC emulsions was also visualized by fluorescence imaging of Nile red-containing emulsions on synthetic membranes. Transport of retinyl palmitate across pig skin was fluorescently visualized. In vitro cell culture study showed that the LC emulsions enhanced cellular metabolism and proliferation of fibroblasts in comparison to the plain emulsion. The multi-lamellar structures composed of aligned fatty alcohol chains were revealed using freezefracture scanning electron microscopy and polarized light microscopy. The LC emulsions showed increased retention at the membrane as well as at the acceptor in comparison to plain oil-in-water emulsions. Total fluorescence intensity at the membrane with the LC emulsions was higher compared to plain emulsions. Confocal laser scanning microscopy (CLSM) of cryo-cut cross-sections revealed that Nile red was highly localized in the epidermis layers, particularly in the stratum corneum in comparison to the plain emulsions. LC emulsions also enhanced transport of retinyl palmitate at cellular levels, in addition to facilitating percutaneous absorption across dermal layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. M. Elias, J. Invest. Dermatol., 80, 11 (1983).

    Google Scholar 

  2. H. D. Onken and C. A. Moyer, Arch. Dermatol., 87, 11 (1963).

    Article  Google Scholar 

  3. P. M. Wertz and D. T. Dowing, Science, 217, 11 (1982).

    Article  Google Scholar 

  4. P. M. Elias, Arch. Dermatol. Res., 270, 11 (1981).

    Article  Google Scholar 

  5. M. A. Lampe, A. L. B. Urlingame, J. Whitney, M. I. Williams, B. E. Brown, E. Roitman, and P. M. Elias, J. Lipid Res., 24, 11 (1983).

    Google Scholar 

  6. P. M. Elias, J. Invest. Dermatol., 80, 11 (1983).

    Google Scholar 

  7. G. Imokawa, G. Kuno, and M. Kawai, J. Invest. Dermatol., 96, 11 (1991).

    Google Scholar 

  8. G. Grubauer, K. R. Freingold, R. M. Harris, and P. M. Elias, J. Lipid Res., 30, 11 (1989).

    Google Scholar 

  9. G. Imokawa, S. Akasaki, H. Hattori, and N. Yoshizuka, J. Invest. Dermatol., 87, 11 (1986).

    Article  Google Scholar 

  10. T. Förster and W. von Rybinski, in Modern Aspects of Emulsion Science, The Royal Society of Chemistry, Cambridge, 1998, p 395.

    Book  Google Scholar 

  11. S. E. Friberg, J. Soc.Cosmet. Chem., 41, 11 (1990).

    Google Scholar 

  12. Y. Liu and S. Friberg, J. Colloid Interface Sci., 340, 11 (2009).

    Google Scholar 

  13. J. Vilasau, C. Solans, M. Gómez, J. Dabrio, R. Mujuka-Garai and J. Esquena, Colloids Surf. A: Physicochem. Eng. Asp., 384, 11 (2011).

    Article  Google Scholar 

  14. T. Guillaume, M. Sophie, T. Phou, G. Antoine, N. Maurizio and B. Christophe, J. Phys. Chem. B, 112, 11 (2008).

    Article  Google Scholar 

  15. H. Iwai, J. Fukasawa, and T. Suzuki, Int. J. Cosmet. Sci., 20, 11 (1998).

    Google Scholar 

  16. W. P. Zhang, and L. Y. Liu, China Surfactant Detergent & Cosmetics, 40, 11 (2010).

    Google Scholar 

  17. W. P. Zhang and L. L. Zhu, China Surfactant Detergent Cosmetics, 39, 11 (2009).

    Google Scholar 

  18. J. Jiao, D. G. Rhodes, and D. J. Burgess, J. Colloid Interface Sci., 250, 11 (2002).

    Article  Google Scholar 

  19. C. E. Lee and N. H. Baek, Korean Patent 10-1997-0015992, p 2 (1997).

    Google Scholar 

  20. M. E. Carlotti, S. Sapino, M. Gallarate, M. Trotta, R. Cavalli, and E. Ugazio, J. Dispers. Sci. Technol., 29, 11 (2008).

    Google Scholar 

  21. S. H. Yoon, K. C. Gupta, J. S. Borah, S. Y. Park, Y. K. Kim, J. H. Lee, and I. K. Kang, Langmuir, 30, 11 (2014).

    Google Scholar 

  22. O. H. Mills and A. H. Kligman, Semin. Dermatol., 1, 11 (1982).

    Google Scholar 

  23. B. D. Park, J. K. Youm, S. K. Jeong, E. H. Choi, S. K. Ahn, and S. H. Lee, J. Invest. Dermatol., 121, 11 (2003).

    Google Scholar 

  24. K. Y. Kyoung, U. K. Jee, and W. G. Cho, J. Korean Pharm. Sci., 37, 11 (2007).

    Google Scholar 

  25. M. Stefania, M. Sergio, and M. Maura, Colloids Surf. A: Physicochem. Eng. Asp., 228, 11 (2003).

    Google Scholar 

  26. H. Iwai, J. Fukasawa, and T. Suzuki, Int. J. Cosmet. Sci., 20, 11 (1998).

    Google Scholar 

  27. W. Zhang and L. Y. Liu, J. Cosmet. Dermatol. Sci. Appl., 3, 11 (2013).

    CAS  Google Scholar 

  28. S. Kenji, T. Uchida, W. R. Kadhum, S. Kanai, H. Todo, T. Oshizaka, and K. Sugibayashi, Eur. J. Pharm. Sci., 67, 11 (2015).

    Google Scholar 

  29. N. Sumalatha, P. Srinivas, and K. Isadore, AAPS PharmSci-Tech, 15, 11 (2014).

    Article  Google Scholar 

  30. W. R. Lee, S. C. Shen, A. Ibrahim, I. A. Aljuffali, Y. C. Li, and J. Y. Fang, Pharm. Res., 31, 11 (2014).

    Google Scholar 

  31. J. H. Kim, J. A. Ko, H. J. Park, G. H. Shin, J. T. Kim, D. D. Cha, and J. H. Cho, J. Agric. Food Chem., 62, 11 (2014).

    Google Scholar 

  32. W. Johannes and K. Daniela, Skin Pharmacol. Physiol., 27, 11 (2014).

    Google Scholar 

  33. A. L. Otto, J. W. Wiechers, C. L. Kelly, J. C. Dederen, J. Hadgraft, and J. du Plessis, Skin Pharmacol. Physiol., 23, 11 (2010).

    Article  Google Scholar 

  34. NTP technical report on the photocarcinogenesis study of retinoic acid and retinyl palmitate [CAS Nos. 302-79-4 (Alltrans-retinoic acid) and 79-81-2 (All-trans-retinyl palmitate)] in SKH-1 mice (Simulated solar light and topical application study), National Toxicology Program, 2012.

  35. B. O. Marcela, H. P. Alice, B. Jessica, S. S. Claudia, L. B. Iguatemy, V. S. Maria, R. L. Gislaine, E. F. Stig, and C. Marlus, BioMed Res. Int., Vol. 2014, Article ID 632570.

    Google Scholar 

  36. E. Cesare, G. C. Felipe, A. Michele, F. Marcella, S. M. Blanca, S. Yoram, and F. Z. Marina, J. Bioact. Compat. Polym., 27, 11 (2012).

    Google Scholar 

  37. R. Abbasalipourkabir, A. Salehzadeh, and R. Abdullah, Biotechnology, 10, 11 (2011).

    Google Scholar 

  38. D. F. Counts, F. Skreko, and J. McBEE, J. Soc. Cosmet. Chem., 39, 11 (1988).

    Google Scholar 

  39. L. Brinon, S. Geiger, V. Alard, J. F. Tranchant, T. Pouget, and G. Couarrze, J. Cosmet. Sci., 49, 11 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk Sang Yoo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M.K., Kim, Y., Gil, S. et al. Effects of liquid crystal-based formulation on transdermal delivery of retinyl palmitate and proliferation of epidermal cells. Macromol. Res. 24, 44–50 (2016). https://doi.org/10.1007/s13233-016-4006-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4006-8

Keywords

Navigation