Skip to main content
Log in

Micelle-templated dendritic gold nanoparticles for enhanced cellular delivery of siRNA

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Successful cellular delivery of synthetic siRNA depends mainly on the capability of a carrier to form a stable complex with siRNA, which can provide efficient protection of the siRNA from enzyme-mediated degradation and improved cellular uptake. However, due to its short length and rigid structure, cellular delivery of siRNA is often not as efficient as that of plasmid DNA using conventional cationic polymer- and lipid-based carriers. Herein, we synthesized a dendritic gold nanoparticle (Au@MC)-based siRNA delivery system, which provides efficient protection of siRNA and improved cellular uptake. The Au@MC can be readily synthesized from a block copolymer micelle template with a dendritic structure. Au@MC can efficiently form a stable complex with the short and rigid siRNA by localizing it in the space between the branches of the Au@MC. The stability and cellular uptake efficiency were significantly influenced by the structural features of Au@MC, such as size, surface charge, and gap width between the branches. A selected Au@MC/siRNA formulation could successfully achieve highly efficient siRNA transfection in the absence and presence of serum proteins without significant cell toxicity, suggesting the formulation as a potential candidate for siRNA-based clinical gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. McManus and P. A. Sharp, Nat. Rev. Genet., 3, 737 (2002).

    Article  CAS  Google Scholar 

  2. D. M. Dykxhoorn, D. Palliser, and J. Lieberman, Gene Ther., 13, 541 (2006).

    Article  CAS  Google Scholar 

  3. D. Bumcrot, M. Manoharan, V. Koteliansky, and D. W. Sah, Nat. Chem. Biol., 2, 711 (2006).

    Article  CAS  Google Scholar 

  4. Y. K. Oh and T. G. Park, Adv. Drug Deliv. Rev., 61, 850 (2009).

    Article  CAS  Google Scholar 

  5. P. Kebbekus, D. E. Draper, and P. Hagerman, Biochemistry, 34, 4354 (1995).

    Article  CAS  Google Scholar 

  6. H. Mok, S. H. Lee, J. W. Park, and T. G. Park, Nat. Mater., 9, 272 (2010).

    CAS  Google Scholar 

  7. S. Biswas and V. P. Torchilin, Pharmaceuticals, 6, 161 (2013).

    Article  CAS  Google Scholar 

  8. S. J. Lee, S. Son, J. Y. Yhee, K. Choi, I. C. Kwon, S. H. Kim, and K. Kim, Biotechnol. Adv., 31, 491 (2013).

    Article  CAS  Google Scholar 

  9. A. L. Bolcato-Bellemin, M. E. Bonnet, G. Creusat, P. Erbacher, and J. P. Behr, Proc. Natl. Acad. Sci. U.S.A., 104, 16050 (2007).

    Article  CAS  Google Scholar 

  10. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, Langmuir, 21, 10644 (2005).

    Article  CAS  Google Scholar 

  11. P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, Nano Materials (Basel), 1, 31 (2011).

    CAS  Google Scholar 

  12. S. Rana, A. Bajaj, R. Mout, and V. M. Rotello, Adv. Drug Deliv. Rev., 64, 200 (2012).

    Article  CAS  Google Scholar 

  13. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Adv. Drug Deliv. Rev., 60, 1307 (2008).

    Article  CAS  Google Scholar 

  14. B. Duncan, C. Kim, and V. M. Rotello, J. Control. Release, 148, 122 (2010).

    Article  CAS  Google Scholar 

  15. A. K. Lytton-Jean, R. Langer, and D. G. Anderson, Small, 7, 1932 (2011).

    Article  CAS  Google Scholar 

  16. E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, Chem. Soc. Rev., 41, 2740 (2012).

    Article  CAS  Google Scholar 

  17. A. Llevot and D. Astruc, Chem. Soc. Rev., 41, 242 (2012).

    Article  CAS  Google Scholar 

  18. Y. Ding, Z. Jiang, K. Saha, C. S. Kim, S. T. Kim, R. F. Landis, and V. M. Rotello, Mol. Ther., 22, 1075 (2014).

    Article  CAS  Google Scholar 

  19. M. Oishi, J. Nakaogami, T. Ishii, and Y. Nagasaki, Chem. Lett., 35, 1046 (2006).

    Article  CAS  Google Scholar 

  20. D. A. Giljohann, D. S. Seferos, A. E. Prigodich, P. C. Patel, and C. A. Mirkin, J. Am. Chem. Soc., 131, 2072 (2009).

    Article  CAS  Google Scholar 

  21. J. S. Lee, J. J. Green, K. T. Love, J. Sunshine, R. Langer, and D. G. Anderson, Nano Lett., 9, 2402 (2009).

    Article  CAS  Google Scholar 

  22. G. B. Braun, A. Pallaoro, G. Wu, D. Missirlis, J. A. Zasadzinski, M. Tirrell, and N. O. Reich, ACS Nano, 3, 2007 (2009).

    Article  CAS  Google Scholar 

  23. A. Elbakry, A. Zaky, R. Liebl, R. Rachel, A. Goepferich, and M. Breunig, Nano Lett., 9, 2059 (2009).

    Article  CAS  Google Scholar 

  24. S. Guo, Y. Huang, Q. Jiang, Y. Sun, L. Deng, Z. Liang, Q. Du, J. Xing, Y. Zhao, P. C. Wang, A. Dong, and X. J. Liang, ACS Nano, 4, 5505 (2010).

    Article  CAS  Google Scholar 

  25. W. J. Song, J. Z. Du, T. M. Sun, P. Z. Zhang, and J. Wang, Small, 6, 239 (2010).

    Article  CAS  Google Scholar 

  26. S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee, and T. G. Park, Int. J. Pharm., 364, 94 (2008).

    Article  CAS  Google Scholar 

  27. M. S. Lee, M. G. Kim, Y. L. Jang, K. Lee, T. G. Kim, S. H. Kim, T. G. Park, H. T. Kim, and J. H. Jeong, Macromol. Res., 19, 688 (2011).

    Article  CAS  Google Scholar 

  28. W. Sermsri, P. Jarujamrus, J. Shiowatana, and A. Siripinyanond, Anal. Bioanal. Chem., 396, 3079 (2010).

    Article  CAS  Google Scholar 

  29. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003).

    Article  CAS  Google Scholar 

  30. C. Noguez, J. Phys. Chem. C, 111, 3806 (2007).

    Article  CAS  Google Scholar 

  31. X. Huang and M. A. El-Sayed, J. Adv. Res., 1, 13 (2010).

    Article  Google Scholar 

  32. A. A. Ashkarran1 and A. Bayat, Int. Nano Lett., 3, 1 (2013).

    Article  Google Scholar 

  33. C. H. Kuo and M. H. Huang, Langmuir, 21, 2012 (2005).

    Article  CAS  Google Scholar 

  34. X. Q. Zou, E. B. Ying, and S. J. Dong, Nanotechnology, 17, 4758 (2006).

    Article  CAS  Google Scholar 

  35. D. Jiang and A. K. Salem, Int. J. Pharm., 427, 71 (2012).

    Article  CAS  Google Scholar 

  36. M. Matsuura, Y. Yamazaki, M. Sugiyama, M. Kondo, H. Ori, M. Nango, and N. Oku, BBA-Biomembranes, 1612, 136 (2003).

    Article  CAS  Google Scholar 

  37. A. Agarwal, R. Vilensky, A. Stockdale, Y. Talmon, R. C. Unfer, and S. K. Mallapragada, J. Control. Release, 121, 28 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Won Park or Ji Hoon Jeong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.S., Kim, N.W., Lee, J.E. et al. Micelle-templated dendritic gold nanoparticles for enhanced cellular delivery of siRNA. Macromol. Res. 23, 670–677 (2015). https://doi.org/10.1007/s13233-015-3091-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3091-4

Keywords

Navigation