Skip to main content
Log in

Refractive index and surface relief grating formation in DNA based dye-doped films

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The refractive index and surface relief grating formation in deoxyribonucleic (DNA) based thin films, functionalized with the well known fluorophore LDS698, was studied in holographic two beam coupling geometry and as function of the polarization of incident laser beams. The DNA biopolymer used was functionalized with cetyltrimethylammonium chloride (CTMA) surfactant. If both beams polarization are parallel (p-p) a refractive index grating is formed, as is usually observed, this is also the case when both beams polarizations are perpendicular (s-p). This fact is tentatively interpreted as due to the DNA matrix chirality. Also formation of a surface relief refractive index grating is observed in these materials for the first time, in contrary to earlier observations reported in literature. This effect is tentatively explained as due to the creation of an electrostatic bond between DNA and the guest molecules, which are electrically charged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Rochon, E. Batalla, and A. Natansohn, Appl. Phys. Lett., 66, 136 (1995).

    Article  CAS  Google Scholar 

  2. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, Appl. Phys. Lett., 66, 1166 (1995).

    Article  CAS  Google Scholar 

  3. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings, Springer, Berlin, 1986.

    Google Scholar 

  4. F. Lagugné-Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett., 75, 1377 (1999).

    Article  Google Scholar 

  5. J. D. Watson and F. H. C. Crick, Nature, 171, 737 (1953).

    Article  CAS  Google Scholar 

  6. F. H. C. Crick and J. D. Watson, Proc. R. Soc. Lond., 223, 80 (1954).

    Article  CAS  Google Scholar 

  7. G. S. Manning, Q. Rev. Biophys., 11, 179 (1978).

    Article  CAS  Google Scholar 

  8. A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, Appl. Phys. Lett., 91, 041118 (2007).

    Article  Google Scholar 

  9. R. Czaplicki, O. Krupka, Z. Essaidi, A. El-Ghayoury, F. Kajzar, J. G. Grote, and B. Sahraoui, Opt. Express, 15, 15268 (2007).

    Article  CAS  Google Scholar 

  10. J. Grote, D. Diggs, R. Nelson, J. Zetts, F. Hopkins, N. Ogata, J. Hagen, E. Heckman, P. Yaney, M. Stone, and L. Dalton, Mol. Cryst. Liq. Cryst., 426, 3 (2005).

    Article  CAS  Google Scholar 

  11. L. Wang, J. Yoshida, and N. Ogata, Chem. Mater., 13, 1273 (2001).

    Article  CAS  Google Scholar 

  12. J. Niziol, M. Sniechowski, E. Hebda, M. Jancia, and J. Pielichowski, Chemistry and Chemical Technology, 4, 397 (2011).

    Google Scholar 

  13. I. Rau, J. G. Grote, F. Kajzar, and A. Pawlicka, Compt. Rend. Phys., 13, 853 (2012).

    Article  CAS  Google Scholar 

  14. Y.-C. Hung, T.-Y. Lin, W.-T. Hsu, Y.-W. Chiu, Y.-S. Wang, and L. Fruk, Opt. Mater., 34, 1208 (2012).

    Article  CAS  Google Scholar 

  15. D. L. Silva, E. Schab-Balcerzak, and A. Miniewicz, J. Appl. Phys., 108, 083540–9 (2010).

    Article  Google Scholar 

  16. M. Moldoveanu, A. Meghea, R. Popescu, J. G. Grote, F. Kajzar, and I. Rau, Mol. Cryst. Liq. Cryst., 522, 180 (2010).

    Google Scholar 

  17. M. Moldoveanu, R. Popescu, C. Pîrvu, J. G. Grote, F. Kajzar, and I. Rau, Mol. Cryst. Liq. Cryst., 522, 530 (2010).

    Google Scholar 

  18. H. You, H. Spaeth, V. N. L. Linhard, and A. J. Steckl, Langmuir, 25, 11698 (2009).

    Article  CAS  Google Scholar 

  19. G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, Chem. Phys. Lett., 484, 321 (2010).

    Article  CAS  Google Scholar 

  20. O. Baldus, A. Leopold, R. Hagen, T. Bieringer, and S. J. Zilker, J. Chem. Phys., 114, 1344 (2001).

    Article  CAS  Google Scholar 

  21. A. Sobolewska, A. Miniewicz, J. Kusto, K. Moczko, D. Sek, E. Schab-Balcerzak, E. Grabiec, and F. Kajzar, Proc. SPIE, 5724, 21 (2005).

    Article  CAS  Google Scholar 

  22. A. Rodríguez, G. Vitrant, P. A. Chollet, and F. Kajzar, Appl. Phys. Lett., 79, 461 (2001).

    Article  Google Scholar 

  23. J. Mysliwiec, L. Sznitko, A. M. Sobolewska, S. Bartkiewicz, and A. Miniewicz, Appl. Phys. Lett., 96, 141106-1–3 (2010).

    Article  Google Scholar 

  24. E. Heckman, P. Yaney, J. Grote, F. Hopkins, and M. Tomczak, Proc. SPIE, 6117, 0K1 (2006).

    Google Scholar 

  25. A. J. Steckl, Nat. Photonics, 1, 3 (2007).

    Article  CAS  Google Scholar 

  26. K. Nakamura, T. Ishikawa, D. Nishioka, T. Ushikubo, and N. Kobayashi, Appl. Phys. Lett., 97, 193301 (2010).

    Article  Google Scholar 

  27. J. Mysliwiec, A. Kochalska, and A. Miniewicz, Appl. Opt., 47, 1902 (2008).

    Article  CAS  Google Scholar 

  28. L. Pray, Nature Education, 1, 1 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Rau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tane, A., Kajzar, F., Zgarian, R. et al. Refractive index and surface relief grating formation in DNA based dye-doped films. Macromol. Res. 21, 331–337 (2013). https://doi.org/10.1007/s13233-013-1131-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1131-5

Keywords

Navigation