Skip to main content
Log in

Effect of total acrylic/fluorinated acrylic monomer contents on the properties of waterborne polyurethane/acrylic hybrid emulsions

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Stable emulsions of waterborne poly(urethane-urea) (WBPU, soft segment content: 57 wt%, dimethylol propionic acid: 19 mol%/5.8 wt%)/n-butyl acrylate (BA)/glycidyl methacrylate (GMA)/perfluorodecyl acrylate (PFA) (weight ratio of BA/GMA/PFA: 5/3/2) hybrid materials containing 0-30 wt% of acrylate content (fluorinated acrylate content: 0–6 wt%) were successfully prepared by an emulsifier-free/solvent-free prepolymer mixing process. However, the as-polymerized hybrid emulsion containing 40 wt% of acrylic monomer content was found to be unstable, indicating that near 40 wt% in acrylic monomer content was beyond the limit of the self-emulsifying ability. By the curve fitting analysis of IR-peaks and X-ray photoelectron spectroscopy (XPS) analysis, the C-F content was found to increase with the increase in acrylate content. The average particle size of emulsion, young modulus/ yield point in stress-strain curve, hardness, thermostability, and water/methylene iodide-contact angles of the film sample increased with increasing acrylate content. However, the viscosity of emulsion, the elongation at break, water swelling and surface energy of film samples were significantly decreased with increasing acrylate content. The tensile strength of film sample decreased a little with increasing acrylate content. These results point to the strong potential of WBPU (70 wt%)/acrylate copolymer (30 wt%) hybrid as a coating material with the lowest surface energy (18.18 mN/m) and the highest contact angles (water: 111.76o, and methylene iodide: 79.95°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. S. Ding, C. Z. Yang, and S. L. Cooper, Polymer, 30, 1204 (1984).

    Article  Google Scholar 

  2. Y. S. Kwak, E. Y. Kim, B. H. Yoo, and H. D. Kim, J. Appl. Polym. Sci., 94, 1743 (2004).

    Article  CAS  Google Scholar 

  3. J. K. Yun, H. J. Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007).

    Article  CAS  Google Scholar 

  4. M. M. Rahman and H. D. Kim, Macromol. Res., 14, 634 (2006).

    Article  CAS  Google Scholar 

  5. M. M. Rahman and H. D. Kim, J. Appl. Polym. Sci., 102, 5684 (2006).

    Article  CAS  Google Scholar 

  6. Y. H. Lee, E. J. Kim, and H. D. Kim, J. Appl. Polym. Sci., 120, 212 (2011).

    Article  CAS  Google Scholar 

  7. D. Kukanja, J. Golob, A. Zupancic-Valant, and M. Krajnc, J. Appl. Polym. Sci., 78, 67 (2000).

    Article  CAS  Google Scholar 

  8. M. Hirose, J. Zhou, and N. Katsutoshi, Prog. Org. Coat., 38, 27 (2000).

    Article  CAS  Google Scholar 

  9. D. B. Otts, S. Dutta, P. Zhang, O. W. Smith, S. F. Thames, and M. W. Urban, Polymer, 45, 6235 (2004).

    Article  CAS  Google Scholar 

  10. Y. Okamoto, Y. Hasegawa, and F. Yoshino, Prog. Org. Coat., 29, 175 (1996).

    Article  CAS  Google Scholar 

  11. M. Hirose, F. Kadowaki, and J. Zhou, Prog. Org. Coat., 31, 157 (1997).

    Article  CAS  Google Scholar 

  12. T. Zhang, W. Wu, X. Wang, and Y. Mu, Prog. Org. Coat., 68, 201 (2010).

    Article  CAS  Google Scholar 

  13. G. N. Chen and K. N. Chen, J. Appl. Polym. Sci., 71, 903 (1999).

    Article  CAS  Google Scholar 

  14. H. Wang, M. Wang, and X. Ge, Radiat. Phys. Chem., 78, 112 (2009).

    Article  CAS  Google Scholar 

  15. M. Li, E. S. Daniels, V. Dimonie, E. D. Sudol, and M. S. El-Aasser, Macromolecules, 38, 4183 (2005).

    Article  CAS  Google Scholar 

  16. M. S. El-Aasser and E. D. Sudol, JCT Res., 1, 21 (2004).

    Google Scholar 

  17. C. Wang, F. Chu, A. Guyot, C. Gauthier, and F. J. Boisson, J. Appl. Polym. Sci., 101, (2006).

  18. Y. Lu and R. C. Larock, Biomacromolecules, 8, 3108 (2007).

    Article  CAS  Google Scholar 

  19. C. Wang, F. Chu, C. Graillat, A. Guyot, C. Gauthier, and J. P. Chanper, Polymer, 46, 1113 (2005).

    Article  CAS  Google Scholar 

  20. J. I. Amalvy, Pigment Resin Technol., 31, 275 (2002).

    Article  CAS  Google Scholar 

  21. H. L. Honig, G. Balle, and W. Keberle, U.S. Patent 3,705,164 (1972).

    Google Scholar 

  22. B. R. Vijayendran, R. Dervy, and B. A Gruber, U.S. Patent 5,173,526 (1992).

    Google Scholar 

  23. L. Ganghui, S. Yiding, and R. Qinghai, J. Appl. Polym. Sci., 97, 2192 (2005).

    Article  Google Scholar 

  24. E. C. Galgoci, C. R. Hegedus, F. H. Walker, D. J. Tempel, F. R. Pepe, K. A. Yxheimer, and A. S. Boyce, JCT Coatings Tech, 2, 28 (2005).

    CAS  Google Scholar 

  25. S. J. Son, K. B. Kim, Y. H. Lee, D. J. Lee, and H. D. Kim, J. Appl. Polym. Sci., 124, 5113 (2012).

    Article  CAS  Google Scholar 

  26. K. M. Bernett and W. A. Zisman, J. Phys. Chem., 66, 1207 (1962).

    Article  CAS  Google Scholar 

  27. E. F. Hare, E. G. Shafrin, and W. A. Zisman, J. Phys. Chem., 58, 236 (1954).

    Article  CAS  Google Scholar 

  28. K. Marianne, W. A. Bernett, and W. A. Zisman, J. Phys. Chem., 64, 1292 (1960).

    Article  Google Scholar 

  29. H. Li, Z. B. Zhang, C. P. Hu, S. S. Wu, and S. K. Ying, Eur. Polym. J., 40, 2195 (2004).

    Article  CAS  Google Scholar 

  30. E. G. Sharfrin and W. A. Zisman, J. Phys. Chem., 64, 519 (1960).

    Article  Google Scholar 

  31. C. Y. Zhang, X. Y. Zhang, and J. B. Dai, and C. Y. Bai, Prog. Org. Coat., 63, 238 (2008).

    Article  CAS  Google Scholar 

  32. D. H. Kaelble and J. Moacanin, Polymer, 18, 475 (1977).

    Article  CAS  Google Scholar 

  33. C. M. Kassis, J. K. Steehler, D. E. Betts, Z. Guan, T. J. Romack, J. M. DeSimone, and R. W. Linton, Macromolecules, 29, 3247 (1966).

    Article  Google Scholar 

  34. R. R. Thomas, D. R. Anton, W. F. Graham, M. J. Darmon, B. B. Sauer, K. M. Stika, and D. G. Swartzfager, Macromolecules, 30, 2883 (1997).

    Article  CAS  Google Scholar 

  35. D. R. Perutz, S. M. Perutz, C.-A. Dai, C. K. Ober, and E. J. Kramer, Macromolecules, 29, 1229 (1996).

    Article  Google Scholar 

  36. J. Genzer, E. Sivaniah, E. J. Kramer, J. Wang, H. Korner, K. Char, C. K. Ober, B. M. Dekoven, R. A. Bubeck, D. A. Fischer, and S. Sambasivan, Langmuir, 16, 1993 (2000).

    Article  CAS  Google Scholar 

  37. M. A. Semesarzadeh and A. H. Navarchian, J. Appl. Polym. Sci., 90, 963 (2003).

    Article  Google Scholar 

  38. C. Dick and R. B. Dominguez, Polymer, 42, 913 (2001).

    Article  CAS  Google Scholar 

  39. B. S. Chiou and P. E. Schoen, J. Appl. Polym. Sci., 83, 212 (2002).

    Article  CAS  Google Scholar 

  40. S. Desai, I. M. Thakore, B. D. Sarawade, and S. Devi, Eur. Polym. J. 36, 711 (2000).

    Article  CAS  Google Scholar 

  41. R. Font, A. Fullana, J. A. Caballero, J. Candel, and A. Garcia, J. Anal. Appl. Pyrolysis, 58, 63 (2001).

    Article  Google Scholar 

  42. S.-C. Linfu, H.-N. Xiao, and Y.-P. Li, Polym. Degrad. Stab. 87, 103 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Do Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.W., Lee, Y.H., Park, H. et al. Effect of total acrylic/fluorinated acrylic monomer contents on the properties of waterborne polyurethane/acrylic hybrid emulsions. Macromol. Res. 21, 709–718 (2013). https://doi.org/10.1007/s13233-013-1122-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1122-6

Keywords

Navigation