Skip to main content
Log in

Moore−Penrose inverse of the singular conditional matrices and its applications

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to provide a broad results on the investigation of the Moore–Penrose inverses of singular conditional matrices formed by generalized conditional sequences. By using some analytical techniques, we obtain explicit Moore–Penrose inverse of the singular conditional matrices whose elements are the generalized conditional sequences. We investigate the correlations between singular conditional matrices and the \((p,q)-\)Pascal matrices of the first and of the second kind. Moreover, we give factorization of the singular conditional matrices via \((p,q)-\)Pascal matrices. We derive several combinatorial identities and provide more generalized results. Finally, we provide better numerical results compared to MATHEMATICA’s PseudoInverse function which uses Singular Value Decomposition (SVD) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Mathematica 27, 365–390 (1903)

    Article  MathSciNet  Google Scholar 

  2. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society 26, 394–395 (1920)

    Google Scholar 

  3. Penrose, R.: A generalized inverse for matrices. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 406–413 (1955). Cambridge University Press

  4. Baksalary, O.M., Trenkler, G.: The Moore–Penrose inverse: a hundred years on a frontline of physics research. The European Physical Journal H 46(1), 1–10 (2021)

    Article  ADS  Google Scholar 

  5. Ben–Israel, A., Greville, T.N.: Generalized inverses: Theory and Applications. Second Edition, Springer (2003)

  6. Courrieu, P.: Fast computation of Moore–Penrose inverse matrices. Neural Information Processing-Letters and Reviews 8(2) (2005)

  7. Greville, T.: Some applications of the pseudoinverse of a matrix. SIAM review 2(1), 15–22 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  8. Miladinovic, M., Stanimirovic, P.: Singular case of generalized Fibonacci and Lucas matrices. Journal of the Korean Mathematical Society 48(1), 33–48 (2011)

    Article  MathSciNet  Google Scholar 

  9. Radičić, B.: The inverse and the Moore–Penrose inverse of a \(k-\)circulant matrix with binomial coefficients. Bulletin of the Belgian Mathematical Society–Simon Stevin 27(1), 29–42 (2020)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Y., Yang, Y., Tan, N., Cai, B.: Zhang neural network solving for time–varying full–rank matrix Moore–Penrose inverse. Computing 92(2), 97–121 (2011)

    Article  MathSciNet  Google Scholar 

  11. Sun, L., Zheng, B., Bu, C., Wei, Y.: Moore–Penrose inverse of tensors via einstein product. Linear and Multilinear Algebra 64(4), 686–698 (2016)

    Article  MathSciNet  Google Scholar 

  12. Shen, S.-Q., He, J.-J.: Moore–Penrose inverse of generalized Fibonacci matrix and its applications. International Journal of Computer Mathematics 93(10), 1756–1770 (2016)

    Article  MathSciNet  Google Scholar 

  13. Shen, S., Liu, W., Feng, L.: Inverse and Moore–Penrose inverse of Toeplitz matrices with classical Horadam numbers. Operator and Matrices 11(4), 929–939 (2017)

    Article  MathSciNet  Google Scholar 

  14. Wang, G., Wei, Y., Qiao, S., Lin, P., Chen, Y.: Generalized inverses: theory and computations. Singapore, Springer, Beijing Science Press (2018)

    Book  Google Scholar 

  15. Sadjang, P.N.: On the fundamental theorem of \((p, q)-\)calculus and some \((p, q)-\)Taylor formulas. Results in Mathematics 73(1), 1–21 (2018)

    MathSciNet  Google Scholar 

  16. Awan, M.U., Talib, S., Noor, M.A., Noor, K.I., Chu, Y.-M.: On post quantum integral inequalities. Journal Of Mathematical Inequalities 15(2), 629–654 (2021)

    Article  MathSciNet  Google Scholar 

  17. Corcino, R.B., Montero, C.B.: On \(p, q-\)difference operator. Journal of the Korean Mathematical Society 49(3), 537–547 (2012)

    Article  MathSciNet  Google Scholar 

  18. Corcino, R.B., On, P.: On \(p, q-\)binomial coefficients. Integers 8(1), 29 (2008)

    Google Scholar 

  19. Koshy, T.: Fibonacci and Lucas numbers with applications. John Wiley & Sons (2019)

  20. Edson, M., Yayenie, O.: A new generalization of Fibonacci sequence & extended Binet’s formula. Integers 9(6), 639–654 (2009)

    Article  MathSciNet  Google Scholar 

  21. Bilgici, G.: Two generalizations of Lucas sequence. Applied Mathematics and Computation 245, 526–538 (2014)

    Article  MathSciNet  Google Scholar 

  22. Yayenie, O.: A note on generalized Fibonacci sequences. Applied Mathematics and Computation 217(12), 5603–5611 (2011)

    Article  MathSciNet  Google Scholar 

  23. Elif, T., Leung, H.H.: A note on congruence properties of the generalized bi–periodic Horadam sequence. Hacettepe Journal of Mathematics and Statistics 49(6), 2084–2093 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cahit Köme.

Additional information

Communicated by B. Sury.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köme, C. Moore−Penrose inverse of the singular conditional matrices and its applications. Indian J Pure Appl Math 55, 138–152 (2024). https://doi.org/10.1007/s13226-022-00352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-022-00352-4

Keywords

Navigation