Skip to main content
Log in

A generalization of Ankeny and Rivlin’s result to \((s-1)^{st}\) derivative of a polynomial

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

For an arbitrary entire function f(z) let \(M(f,r) = max_{|z|=r}|f(z)|, (r > 0)\) and \(\Vert f\Vert = max_{|z|=1}|f(z)|\). For a polynomial \(p(z) = a_0 + \sum _{j=t}^{n}a_jz^j, (1 \le t \le n)\), of degree n having no zeros in \(|z| < k, (k\ge 1)\), with \(m = min_{|z|=k}|p(z)|\), it is known that for \(R \ge 1\)

$$\begin{aligned} M(p,R)\le & {} \frac{R^n + k^t}{1 + k^t}\Vert p\Vert - \frac{R^n-1}{1+k^t}m - \frac{n}{1+k^t}\left( \frac{(\Vert p\Vert - m)^2 - (1+k^t)^2|a_n|^2}{(\Vert p\Vert -m)} \right) \\&\times \left\{ \frac{(R-1)(\Vert p\Vert -m)}{(\Vert p\Vert -m)+(1+k^t)|a_n|} - \ln \left( 1 + \frac{(R-1)(\Vert p\Vert -m)}{(\Vert p\Vert -m)+(1+k^t)|a_n|}\right) \right\} \end{aligned}$$

and we have obtained for \(R \ge 1\) and \(1 \le s \le n\)

$$\begin{aligned} M(p^{(s-1)},R)\le & {} \frac{R^{n-s+1}-1}{n-\overline{s-1}}.\frac{n(n-1)\ldots (n-\overline{s-1})}{1+k^t} (\Vert p\Vert -m) \\&-\frac{n(n-1)\ldots (n-\overline{s-1})}{1+k^t} \left( \frac{(\Vert p\Vert -m)^2 - (1+k^t)^2 |a_n|^2}{\Vert p\Vert -m}\right) \\&\times \left\{ \frac{(R-1)(\Vert p\Vert -m)}{(\Vert p\Vert -m)+(1+k^t)|a_n|} - \ln \left( 1 + \frac{(R-1)(\Vert p\Vert -m)}{(\Vert p\Vert -m)+(1+k^t)|a_n|}\right) \right\} + \Vert p^{(s-1)}\Vert , \end{aligned}$$

thereby suggesting a generalization of Ankeny and Rivlin’s result

$$\begin{aligned} M(P,R) \le \frac{1+R^n}{2}, \left( P(z): \text { a polynomial of degree } n \text { having no zeros in } |z| < 1, \text { with } \Vert p\Vert =1\right) \end{aligned}$$

to \((s-1)^{st}\) derivative of a polynomial, as well as generalization of known result to \((s-1)^{st}\) derivative of a polynomial. Certin associated results have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. C. Ankeny, T. J. Rivlin, On a theorem of S. Bernstein, Pac. J. Math., 5 (1955), 849–852.

    Article  Google Scholar 

  2. K. K. Dewan, A. A. Bhat, On the maximum modulus of polynomials not vanishing inside the unit circle, J. Interdiscip. Math., 1 (1998), 129–140.

    Article  MathSciNet  Google Scholar 

  3. Robert B. Gardner, N. K. Govil, Amy Weems, Growth of polynomials not vanishing inside a circle, Int. J. Pure Appl. Math., 13 (2004), 491–498.

    MathSciNet  MATH  Google Scholar 

  4. Robert B. Gardner, N. K. Govil, Amy Weems, Some results concerning rate of growth of polynomials, East J. Approx., 10 (2004), 301–312.

  5. N. K. Govil, On the maximum modulus of polynomials not vanishing inside the unit circle, Approximation Theory Appl., 5 (1989), 79–82.

    MathSciNet  MATH  Google Scholar 

  6. V. K. Jain, Generalizations of certain inequalities for\(s^{th}\)derivative of polynomial, (submitted for publication).

  7. G. Polya, G. Szeg\(\ddot{o}\), Problems and Theorems in analysis, Vol. 1, Springer-Verlag, Berlin-Heidelberg (1972).

  8. Q. I. Rahman, Some inequalities for polynomials, Proc. Am. Math. Soc., 56 (1976), 225–230.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Jain.

Additional information

Communicated by Gadadhar Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V.K. A generalization of Ankeny and Rivlin’s result to \((s-1)^{st}\) derivative of a polynomial. Indian J Pure Appl Math 52, 479–485 (2021). https://doi.org/10.1007/s13226-021-00049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00049-0

Keywords

AMS Subject Classification

Navigation