Skip to main content
Log in

Al3+ and Fe2+ toxicity reduction potential by acid-resistant strains of Rhodopseudomonas palustris isolated from acid sulfate soils under acidic conditions

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

This research aimed to evaluate the capacity of acid-resistant purple nonsulfur bacteria, Rhodopseudomonas palustris strains VNW02, TLS06, VNW64, and VNS89, to resist Al3+ and Fe2+ and to investigate their potential to remove both metals from aqueous solutions using exopolymeric substances (EPS) and biomasses. Based on median inhibition concentration (IC50), strain VNW64 was the most resistant to both metals under conditions of aerobic dark and microaerobic light; however, strain TLS06 was more resistant to Al3+ under aerobic dark conditions. High metal concentrations resulted in an altered cellular morphology, particularly for strain TLS06. Metal accumulation in all tested PNSB under both incubating conditions as individual Al3+ or Fe2+ was in the order of cell wall > cytoplasm > cell membrane. This was also found in a mixed metal set only under conditions of aerobic dark as microaerobic light was in the degree of cytoplasm > cell wall > cell membrane. Of all strains tested, EPS from strain VNW64 had the lowest carbohydrate and the highest protein contents. Metal biosorption under both incubating conditions, EPS produced by strains VNW64 and TLS06, achieved greater removal (80 mg Al3+ L−1 and/or 300 mg Fe2+ L−1) than their biomasses. Additionally, strain VNW64 had a higher removal efficiency compared to strain TLS06. Based on the alteration in cellular morphology, including biosorption and bioaccumulation mechanisms, R. palustris strains VNW64 and TLS06 demonstrated their resistance to metal toxicity. Hence, they may have great potential for ameliorating the toxicity of Al3+ and Fe2+ in acid sulfate soils for rice cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilera A, Souza-Egipsy V, San Martín-Úriz P, Amils R (2008) Extraction of extracellular polymeric substances from extreme acidic microbial biofilms. Appl Microbiol Biot 78(6):1079–1088

    Article  CAS  Google Scholar 

  • Attanandana T, Vacharotayan S (1986) Acid sulfate soils: their characteristics, genesis, amelioration and utilization. Southeast Asian Stud 24:155–180

    Google Scholar 

  • Auger C, Han S, Appanna VP, Thomas SC, Ulibarri G, Appanna VD (2013) Metabolic reengineering invoked by microbial systems to decontaminate aluminum: implications for bioremediation technologies. Biotechnol Adv 31:266–273

    Article  CAS  PubMed  Google Scholar 

  • Boeris PS, Agustín MR, Acevedo DF, Lucchesi GI (2016) Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida. J Biotechnol 236:57–63

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Newman DK (2011) Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, Fix K. Mol Microbiol 79(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Choudhury BU, Malang A, Webster R, Mohapatra KP, Verma BC, Kumar M, Das A, Islam N, Hazarika S (2017) Acid drainage from coal mining: effect on paddy soil and productivity of rice. Sci Total Environ 583:344–351

    Article  CAS  PubMed  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Eboigbodin KE, Biggs CA (2008) Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules 9(2):686–695

    Article  CAS  PubMed  Google Scholar 

  • Engel A, Piontek J, Grossart HP, Riebesell ULF, Schulz KG, Sperling M (2014) Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J Plankton Res 36(3):641–657

    Article  CAS  Google Scholar 

  • Fernández-Dávila ML, Razo-Estrada AC, García-Medina S, Gómez-Oliván LM, Piñón-López MJ, Ibarra RG, Galar-Martínez M (2012) Aluminum-induced oxidative stress and neurotoxicity in grass carp (Cyprinidae—Ctenopharingodon idella). Ecotoxicol Environ Saf 76:87–92

    Article  PubMed  Google Scholar 

  • Ferreira ML, Casabuono AC, Stacchiotti ST, Couto AS, Ramirez SA, Vullo DL (2016) Chemical characterization of Pseudomonas veronii 2E soluble exopolymer as Cd (II) ligand for the biotreatment of electroplating wastes. Int Biodeter Biodegr 119:605–613

    Article  Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2:239–259

    Article  CAS  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319

    Article  CAS  Google Scholar 

  • Hou W, Ma Z, Sun L, Han M, Lu J, Li Z, Mohamad OA, Wei G (2013) Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+. J Hazard Mater 261:614–620

    Article  CAS  PubMed  Google Scholar 

  • Ilamathi R, Nirmala GS, Muruganandam L (2014) Heavy metals biosorption in liquid solid fluidized bed by immobilized consortia in alginate beads. Int J Chem Tech Res 6:652–662

    Google Scholar 

  • Johnson JL (1981) In: Gerhardt P, RGE M, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC 20006, p 456

    Google Scholar 

  • Jones AM, Xue Y, Kinsela AS, Wilcken KM, Collins RN (2016) Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters. Sci Total Environ 547:104–113

    Article  CAS  PubMed  Google Scholar 

  • Kantachote D, Nunkaew T, Kantha T, Chaiprapat S (2016) Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Appl Soil Ecol 100:154–161

    Article  Google Scholar 

  • Khuong NQ, Kantachote D, Onthong J, Sukhoom A (2017) The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al3+ and Fe2+ using biosorption for agricultural application. Biocatal Agric Biotechnol 12:329–340

    Google Scholar 

  • Lee HS, Suh JH, Kim IB, Yoon T (2004) Effect of aluminum in two-metal biosorption by an algal biosorbent. Miner Eng 17(4):487–493

    Article  CAS  Google Scholar 

  • Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR (2014) Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere 24:322–329

    Article  CAS  Google Scholar 

  • McLachlan DRC (1995) Aluminium and the risk for Alzheimer’s disease. Environmentrics 6:233–275

    Article  Google Scholar 

  • Mikutta R, Zang U, Chorover J, Haumaier L, Kalbitz K (2011) Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms. Geochim Cosmochim Ac 75(11):3135–3154

    Article  CAS  Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25

    Article  CAS  Google Scholar 

  • Neumann G, Veeranagouda Y, Karegoudar TB, Sahin Ö, Mäusezahl I, Kabelitz N, Kappelmeyer U, Heipieper H (2005) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Nookongbut P, Kantachote D, Megharaj M (2016) Arsenic contamination in areas surrounding mines and selection of potential As-resistant purple nonsulfur bacteria for use in bioremediation based on their detoxification mechanisms. Ann Microbiol 66(4):1419–1429

    Article  CAS  Google Scholar 

  • Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ (2015) Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohyd Polym 115:334–341

    Article  CAS  Google Scholar 

  • Ortega-Retuerta E, Passow U, Duarte CM, Reche I (2009) Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. Biogeosciences 6(12):3071–3080

    Article  CAS  Google Scholar 

  • Ozdemir G, Baysal SH (2004) Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Appl Microbiol Biot 64(4):599–603

    Article  CAS  Google Scholar 

  • Panhwar QA, Naher UA, Shamshuddin J, Radziah O, Hakeem KR (2016) Management of acid sulfate soils for sustainable rice cultivation in Malaysia. In: Hakeem K, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 91–104

    Chapter  Google Scholar 

  • Panwichian S, Kantachote D, Wittayaweerasak B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol 14(4):2–2

    Google Scholar 

  • Ruan X, Li L, Liu J (2013) Flocculating characteristic of activated sludge flocs: interaction between Al3+ and extracellular polymeric substances. J Environ Sci 25(5):916–924

    Article  CAS  Google Scholar 

  • Samaranayake P, Peiris BD, Dssanayake S (2012) Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa). Int J Agric Biol 14:296–298

    CAS  Google Scholar 

  • Sheng GP, Yu HQ, Yue ZB (2005) Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biot 69(2):216–222

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Soltanpour PN, Johnson GW, Workman SM, Jones JB, Miller RO (1996) Inductively coupled plasma emission spectrometry and inductively coupled plasma-mass spectrometry. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (ed.) Methods of soil analysis. Part 3—chemical methods. SSSA Book Ser. 5.3. SSSA, ASA, Madison, WI. doi:https://doi.org/10.2136/sssabookser5.3. Pp 91-139

  • Swanner ED, Bayer T, Wu W, Hao L, Obst M, Sundman A, Byrne JM, Michel FM, Kleinhanns IC, Kappler A, Schoenberg R (2017) Iron isotope fractionation during Fe (II) oxidation mediated by the oxygen-producing marine cyanobacterium Synechococcus PCC 7002. Environ Sci Technol 51(9):4897–4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia JM, Muñoz J, González F, Blázquez ML, Ballester A (2013) Sorption of ferrous and ferric iron by extracellular polymeric substances (EPS) from acidophilic bacteria. Prep Biochem Biotech 43(8):815–827

    Article  CAS  Google Scholar 

  • Tapia JM, Muñoz J, González F, Blázquez ML, Ballester A (2016) Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium sp.: a mechanism proposal. Rev Metal Madrid 52(3):e076. https://doi.org/10.3989/revmetalm.076

    Article  Google Scholar 

  • Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    Article  PubMed  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Garg S, Waite TD (2017) Light-mediated reactive oxygen species generation and iron redox transformations in the presence of exudate from the cyanobacterium Microcystis aeruginosa. Environ Sci Technol 51(15):8384–8395

    Article  CAS  PubMed  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) Microbial extracellular polymeric substances. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Wurl O, Miller L, Vagle S (2011) Production and fate of transparent exopolymer particles in the ocean. J Geophys Res 116(C7):C00H13

    Google Scholar 

  • Xuan W, Bin Z, Zhiqiang S, Zhigang Q, Zhaoli C, Min J, Junwen L, Jingfeng W (2010) The EPS characteristics of sludge in an aerobic granule membrane bioreactor. Bioresour Technol 101(21):8046–8050

    Article  PubMed  Google Scholar 

  • Yuan DQ, Wang YY (2013) Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge. J Environ Sci 25(1):155–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author was totally supported by the Graduate School, Prince of Songkla University from Thailand’s Education Hub for Southern Region of ASEAN Countries (TEH-AC), grant number TEH-AC 027/2015 that made possible this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangporn Kantachote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.Q., Kantachote, D., Onthong, J. et al. Al3+ and Fe2+ toxicity reduction potential by acid-resistant strains of Rhodopseudomonas palustris isolated from acid sulfate soils under acidic conditions. Ann Microbiol 68, 217–228 (2018). https://doi.org/10.1007/s13213-018-1332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1332-4

Keywords

Navigation