Skip to main content
Log in

Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this article is to use statistical Plackett–Burman and Box–Wilson response surface methodology to optimize the medium components and, thus, improve chitinase production by Streptomyces griseorubens C9. This strain was previously isolated and identified from a semi-arid soil of Laghouat region (Algeria). First, syrup of date, colloidal chitin, yeast extract and K2HPO4, KH2PO4 were proved to have significant effects on chitinase activity using the Plackett–Burman design. Then, an optimal medium was obtained by a Box–Wilson factorial design of response surface methodology in liquid culture. Maximum chitinase production was predicted in medium containing 2% colloidal chitin, 0.47% syrup of date, 0.25 g/l yeast extract and 1.81 g/l K2HPO4, KH2PO4 using response surface plots of the STATISTICA software v.12.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adinarayana K, Ellaiah P (2002) Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J Pharm Pharm Sci 5:272–278

    CAS  PubMed  Google Scholar 

  • Andronopoulou E, Vorgias CE (2004) Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus. Appl Microbiol Biotechnol 65:694–702. doi:10.1007/s00253-004-1640-4

    Article  CAS  PubMed  Google Scholar 

  • Attwood MM, Zola H (1967) The association between chitin and protein in some chitinous tissues. Comp Biochem Physiol 20:993–998. doi:10.1016/0010-406X(67)90069-2

    Article  CAS  Google Scholar 

  • Box GE, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B 13:1–45

    Google Scholar 

  • Box GEP (1952) Multi-factor designs of first order. Biometrika 39:49–57. doi:10.1093/biomet/39.1-2.49

    Article  Google Scholar 

  • Ehrlich H, Krautter M, Hanke T et al (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool B 308:473–483. doi:10.1002/jez.b.21174

    Article  Google Scholar 

  • Ehrlich H, Maldonado M, Spindler K et al (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B 308B:347–356. doi:10.1002/jez.b.21156

    Article  CAS  Google Scholar 

  • Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology. Process Biochem 39:1057–1062

    Article  CAS  Google Scholar 

  • Ergun M, Mutlu SF (2000) Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour Technol 73:251–255

    Article  CAS  Google Scholar 

  • Fenice M, Leuba J-L, Federici F (1998) Chitinolytic enzyme activity of Penicillium janthinellum P9 in bench-top bioreactor. J Ferment Bioeng 86:620–623. doi:10.1016/S0922-338X(99)80020-8

    Article  CAS  Google Scholar 

  • Funkhouser JD, Aronson NN (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:96. doi:10.1186/1471-2148-7-96

    Article  PubMed  PubMed Central  Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90:754–760

    Article  CAS  PubMed  Google Scholar 

  • Gohel V, Naseby DC (2007) Thermalstabilization of chitinolytic enzymes of Pantoea dispersa. doi: 10.1016/j.bej.2007.01.009

  • Gong X, Chen F (1997) Optimization of culture medium for growth of Haematococcus pluvialis. J Appl Phycol 9:437–444

    Article  CAS  Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. In: Marshall KC (ed) Advances in microbial ecology. Springer, New York, pp 387–430

    Chapter  Google Scholar 

  • Han Y, Yang B, Zhang F et al (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11:132–140. doi:10.1007/s10126-008-9126-5

    Article  CAS  PubMed  Google Scholar 

  • He J, Zhen Q, Qiu N et al (2009) Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a′ using response surface methodology. Bioresour Technol 100:5922–5927

    Article  CAS  PubMed  Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wang Y, Cui Y, Hua X (2010) Optimization of antifungal effect of Surfactin and Iturin to Penicillium notatum in syrup of peach by RSM. Int J Pept Res Ther 16:63–69

    Article  CAS  Google Scholar 

  • Kaiser K, Benner R (2008) Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr 53:99–112. doi:10.4319/lo.2008.53.1.0099

    Article  CAS  Google Scholar 

  • Kamel BS (1979) Dates as a potential substrate for single cell protein production. Enzym Microb Technol 1:180–182

    Article  CAS  Google Scholar 

  • Khan MA (2010) Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. J Microbiol Biotechnol 20:1597–1602. doi:10.4014/jmb.0909.09040

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DC (2008) Design and analysis of experiments. Wiley, New York

  • Nancib N, Nancib A, Boudjelal A et al (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresour Technol 78:149–153

    Article  CAS  PubMed  Google Scholar 

  • Narayana KJP, Vijayalakshmi M (2009) Chitinase production by streptomyces sp. ANU 6277. Braz J Microbiol. doi:10.1590/S1517-83822009000400002

    PubMed  PubMed Central  Google Scholar 

  • Nawani NN, Kapadnis BP (2005) Optimization of chitinase production using statistics based experimental designs. Process Biochem 40:651–660

    Article  CAS  Google Scholar 

  • Nielsen MN, Sørensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Pan CM, Fan YT, Xing Y et al (2008) Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresour Technol 99:3146–3154

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Gohel V, Raol B (2007) Statistical optimisation of medium components for chitinase production byPaenibacillus sabina strain JD2. Ann Microbiol 57:589–597

    Article  CAS  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305. doi:10.2307/2332195

    Article  Google Scholar 

  • Radford A (1991) Methods in yeast genetics — A laboratory course manual by M Rose, F Winston and P Hieter. Biochem Educ 19:101–102. doi:10.1016/0307-4412(91)90039-B

    Article  Google Scholar 

  • Rao KJ, Kim C-H, Rhee S-K (2000) Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem 35:639–647

    Article  CAS  Google Scholar 

  • Reynolds DM (1954) Exocellular chitinase from a Streptomyces sp. Microbiology 11:150–159

    CAS  Google Scholar 

  • Roukas T, Kotzekidou P (1997) Pretreatment of date syrup to increase citric acid production. Enzym Microb Technol 21:273–276

    Article  CAS  Google Scholar 

  • Schaefer J, Kramer KJ, Garbow JR et al (1987) Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 235:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Sherief AA, El-Sawah MMA, El-Naby MAA (1991) Some properties of chitinase produced by a potent Aspergillus carneus strain. Appl Microbiol Biotechnol 35:228–230

    Article  CAS  Google Scholar 

  • Singh AK, Mehta G, Chhatpar HS (2009) Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Lett Appl Microbiol 49:708–714

    Article  CAS  PubMed  Google Scholar 

  • St Leger RJ, Cooper RM, Charnley AK (1986) Cuticle-degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzymes. Microbiology 132:1509–1517

    Article  CAS  Google Scholar 

  • Treichel H, de Oliveira D, Mazutti MA et al (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196

    Article  CAS  Google Scholar 

  • Ulhoa CJ, Peberdy JF (1991) Regulation of chitinase synthesis in Trichoderma harzianum. Microbiology 137:2163–2169. doi:10.1099/00221287-137-9-2163

    CAS  Google Scholar 

  • Usui T, Hayashi Y, Nanjo F et al (1987) Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochim Biophys Acta Gen Subj 923:302–309

    Article  CAS  Google Scholar 

  • Vaidya R, Vyas P, Chhatpar H (2003) Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzym Microb Technol 33:92–96. doi:10.1016/S0141-0229(03)00100-5

    Article  CAS  Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J Microbiol Biotechnol 17:691–696

    Article  CAS  Google Scholar 

  • Wang Z-W, Liu X-L (2008) Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour Technol 99:8245–8251

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Hallett SG, Sheppard J, Watson AK (1997) Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes spores. Appl Microbiol Biotechnol 47:301–305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Boulahrouf, head of applied microbiology team at the engineering microbiology and applications laboratory (Constantine University) for helping us in this work. Thanks are expressed to France Chitin (www.france-chitine.com) for a gift of chitin. We also thank M. Merouane Fateh and M. Mezdour Hichem (Constantine University) for their technical advice. This work was supported by Mentouri Brothers University Constantine, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gasmi Meriem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meriem, G., Mahmoud, K. Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology. Ann Microbiol 67, 175–183 (2017). https://doi.org/10.1007/s13213-016-1249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1249-8

Keywords

Navigation