Skip to main content

Advertisement

Log in

Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp.

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The enzyme 1-aminocyclopropane-1-carboxylate deaminase catalyzes the degradation of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of the plant hormone ethylene, into α-ketobutyrate and ammonia. The enzyme has been detected in a limited number of bacteria and plays a significant role in sustaining plant growth and development under biotic and abiotic stress conditions by reducing stress-induced ethylene production in plants. We have screened 32 fluorescent Pseudomonas sp. isolated from rhizosphere and non-rhizosphere soils of different crop production systems for drought tolerance using polyethylene glycol 6000 (PEG 6000). Nine of these isolates were tolerant to a substrate metric potential of −0.30 MPa (15 % PEG 6000) and therefore considered to be drought-tolerant. All of these drought-tolerant isolates were screened for ACC deaminase activity using ACC as the sole nitrogen source, and one (SorgP4) was found to be positive for ACC, producing 3.71 ± 0.025 and 1.42 ± 0.039 μM/mg protein/h of α-ketobutyrate under the non-stress and drought stress condition, respectively. The isolate SorgP4 also showed other plant growth-promoting traits, such as indole acetic acid production, phosphate solubilization, siderophore and hydrogen cyanide production. The ACC deaminase gene (acdS) from the isolate SorgP4 was amplified, and the nucleotide sequence alignment of the acdS gene showed significant homology with acdS genes of NCBI Genbank. The 16S rRNA gene sequencing analysis identified the isolate as Pseudomonas fluorescens. Both sequences have been submitted to the NCBI GenBank under the accession numbers JX885767 and KC192771 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic, San Diego, pp 113–114

    Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113(5):1139–1144

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC-deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances. Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burton K (1956) A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell BG, Thomson JA (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbio Lett 138:207–210

    Article  CAS  Google Scholar 

  • Chenu C (1993) Clay or sand polysaccharide associations as models for the interface between microorganisms and soil: water-related properties and microstructure. Geoderma 56:143–156

    Article  CAS  Google Scholar 

  • Chenu C, Roberson EB (1996) Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol Biochem 28:877–884

    Article  CAS  Google Scholar 

  • Chen WP, Kuo TT (1993) A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric methods for determination of sugars of related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase form indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    Article  CAS  PubMed  Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Phytohormones in soil. Marcel Dekker, New York

    Google Scholar 

  • Fett WF, Osman SF, Fishman ML, Siebles TS III (1986) Alginate production by plant pathogenic pseudomonads. Appl Environ Microbiol 52:466–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fett WF, Osman SF, Dunn MF (1989) Characterization of exopolysaccharides produced by plant associated Fluorescent pseudomonads. Appl Environ Microbiol 55:579–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) A colorimetric determination of phosphorous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Hartel PG, Alexander M (1986) Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci Soc Am J 50:1193–1198

    Article  CAS  Google Scholar 

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microb Biot 25:573–581

    Article  CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene 114 synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Konnova SA, Brykova OS, Sachkova OA, Egorenkova IV, Ignatov VV (2001) Protective role of the polysaccharide containing capsular components of Azospirillum brasilense. Microbiology 70:436–440

    Article  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial angualar leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nayani S, Mayak S, Glick BR (1998) The effect of plant growth promoting rhizobacteria on the senescence of flower petals. Ind J Exp Biol 36:836–839

    Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defens in gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Díaz M, Rodelas-Gonzalés, Pozo-Clemente C, Martínez-Toledo MV, González-López J (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Ahmad I, Pichtel J, Hayat S (eds) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley–VCH Verlag GmbH & Co., Weinheim, pp 55–80

    Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Minakshi G, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1997) ACC deaminase genes from plant growth promoting hizobacteria. In: Kobayashi K, Hemma Y, Kodema F, Kondo N, Akino S, Ogoshi A (eds) Plant growth-promoting rhizobacteria. Present status and future prospects. Organization for Economic Cooperation and Development, Paris, pp 320–324

    Google Scholar 

  • Spaink HP (1997) Ethylene as a regulator of Rhizobium infection. Trends Plant Sci 2:203–204

    Article  Google Scholar 

  • Stearns JC, Saleh S, Greenberg BM, Dixon DG, Glick BR (2005) 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    Article  CAS  PubMed  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomanas fluorescens and other biocontrol organisms mediate defense against the anthracnose pathogen in mango. World J Microb Biot 20:235–244

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1 carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JF (1958) The extracellular polysaccharides of bacteria. Bacteriol Rev 22:46–73

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Zahir AZ, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under saltstressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Sk. Z. Ali acknowledges the financial support provided by University Grants Commission, Govt. of India through the D. S. Kothari Post Doctoral Fellowship.

Ethical standards

The authors declare that all the experiments were conducted according to the current laws of the country in which they were performed

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik Zulfikar Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S.Z., Sandhya, V. & Venkateswar Rao, L. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp.. Ann Microbiol 64, 493–502 (2014). https://doi.org/10.1007/s13213-013-0680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0680-3

Keywords

Navigation