Skip to main content
Log in

Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the effects of photoperiod, salinity and pH on growth and lipid content of Pavlova lutheri microalgae for biodiesel production in small-scale and large-scale open-pond tanks. In a 250-mL flask, the cultures grew well under 24 h illumination with maximum specific growth rate, μ max , of 0.12 day−1 and lipid content of 35 % as compared to 0.1 day−1 and 15 % lipid content in the dark. The salinity was optimum for the cell growth at 30–35 ppt, but the lipid content of 34–36 % was higher at 35–40 ppt. Algal growth and lipid accumulation was optimum at pH 8–9. Large-scale cultivation in 5-L and 30-L tanks achieved μ max of 0.13–0.14 day−1 as compared to 0.12 day−1 in small-scale and 300L cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antoni D, Zverlov VV, Schwarz W (2007) Biofuels from microbes Appl. Microbiol Biotech 77(1):23–35

    Article  CAS  Google Scholar 

  • AQUACOP (1984) Aquaculture en milieu tropical. IFREMER Service Documentation Publication. B. P. 337–29273 Brest, cedex

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 67:911–917

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Burns NA (2010) Biomass—the next revolution in surfactants? Inform 21(727–729):779

    Google Scholar 

  • Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552

    Article  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Chen F, Johns MR (1996) Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. J Appl Phycol 8:15–19

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Costa JA, Colla LM, Filho PD (2003) Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Z Naturforsch 58c:76–80

    Google Scholar 

  • Cucchiari E, Guerrini F, Penna A, Totti C, Pistocchi R (2008) Effect of salinity, temperature, organic and inorganic nutrients on growth of cultured Fibrocapsa japonica (Raphidophyceae) from the northern Adriatic Sea. Harmful Algae 7:405–414

    Article  CAS  Google Scholar 

  • Dujjanutat P, Kaewkannetra P (2011) Effects of wastewater strength and salt stress on microalgal biomass production and lipid accumulation. World Acad Sci Eng Technol 60:1163–1168

    Google Scholar 

  • Goswami RCD, Kalita MC (2011) Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation—A study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J Algal Biomass Utln 2(4):42–49

    Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guihéneuf F, Fouqueray M, Mimouni V, Ulmann L, Jacquette B, Tremblin G (2010) Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol 22:629–638

    Article  Google Scholar 

  • Guihéneuf F, Ulmann L, Tremblin G, Mimouni V (2011) Light-dependent utilization of two radiolabelled carbon sources, sodium bicarbonate and sodium acetate, and relationships with long chain polyunsaturated fatty acid synthesis in the microalga Pavlova lutheri (Haptophyta). Eur J Phycol 46(2):143–152

    Article  Google Scholar 

  • Hamilton RD (1973) Sterilization. In: Stein JR (ed) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, London, pp 181–194

    Google Scholar 

  • Hu C, Li M, Li J, Zhu Q, Liu Z (2008) Variation of lipid and fatty acid compositions of the marine microalga Pavlova viridis (Prymnesiophyceae) under laboratory and outdoor culture conditions. World J Microbiol Biotechnol 24:1209–1214

    Article  CAS  Google Scholar 

  • Kim CJ, Jung YH, Oh HM (2007) Factors indicating culture status during cultivation of Spirulina (Arthospira) platensis. J Microbiol 45(2):122–127

    CAS  PubMed  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  PubMed  Google Scholar 

  • MacLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, London, pp 25–51

    Google Scholar 

  • Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D, Papanikolaou S, Aggelis G (2011) Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors. Eng Life Sci 11(1):52–58

    Article  CAS  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Mbatia B, Aldlercreutz D, Aldlercreutz P, Mahadhy A, Mulaa F, Mattiasson B (2010) Enzymatic oil extractionand positional analysis of ω-3 fatty acids in Nile perch and Salmonheads. Process Biochem 45:815–819

    Article  CAS  Google Scholar 

  • Meireles LA, Guedes C, Malcata FX (2003) Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J Agric Food Chem 51:2237–2241

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  PubMed  Google Scholar 

  • Morin S, Coste M, Delmas F (2008) A comparison of specific growth rates of periphytic diatoms of varying cell size under laboratory and field conditions. Hydrobiologia 614:285–297

    Article  Google Scholar 

  • Ratledge C (2011) Are algal oils realistic options for biofuels? Eur J Lipid Sci Technol 113:135–136

    Article  CAS  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Tech 20(7):155–160

    Article  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Sayegh FAQ, Montagnes DJS (2011) Temperature shifts induce intraspecific variation in microalgal production and biochemical composition. Bioresour Technol 102:3007–3013

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biot 35:421–430

    Article  CAS  Google Scholar 

  • Wang C, Li H, Wang Q, Wei P (2010) Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry. Sheng wu gong cheng xue bao Chin J biotechnol 26(8):1074–1079

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universiti Teknologi PETRONAS for providing facilities and for the scholarship to Syed Muhammad Usman Shah. Funding through the Fundamental Research Grant Scheme (FRGS/2/2010/TK/UTP/02/14) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Azmuddin Abdullah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S.M.U., Che Radziah, C., Ibrahim, S. et al. Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri . Ann Microbiol 64, 157–164 (2014). https://doi.org/10.1007/s13213-013-0645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0645-6

Keywords

Navigation