Skip to main content

Advertisement

Log in

Impact of bacterial biofilms: the importance of quantitative biofilm studies

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The impact of various parameters, such as nutrient, temperature, surface materials and condition and hydrodynamics, on biofilm formation is well studied. Extensive research has focused on the relationship between these parameters and bacterial biofilms, with the aim of gaining an understanding of biofilm behaviour under different growth conditions so that relevant control strategies can be implemented. In such studies, model simulations have been used to qualitative study the behaviour of the biofilms respond to change in parameters. However, little is known about the quantitative study of biofilm behaviour in response to change in these parameters. In previous studies, it was indicated that nutrient concentrations influence biofilm morphology (biomass, structures and thickness) but the concentration levels at which biofilm change in structure and thickness is not mentioned. These observations were based on determining biofilms structure without considering the biomass. Findings that are based on qualitative studies only may be insufficient and not in supportive due to the fact that may be pose many speculations and debates. The biomass, structures and thickness form biofilm morphology, therefore if one part is affected, the other parts may also be affected. It is important to conduct research that will focus on both qualitative and qualitative analysis on the impact of parameters on biofilm formation and growth. The aim of this review is to highlight the importance of conducting parallel research on quantitative and qualitative study on microbial biofilms with respect to biomass, structure and thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison DG (2003) The biofilm matrix. Biofoul 19:139–150

    Article  CAS  Google Scholar 

  • An YH, Dickison R, Doyle RJ (2000) Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections. In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion: Principles, methods and applications. Humana Press, Totowa, pp 1–27

    Chapter  Google Scholar 

  • Apilanez I, Gutierrez A, Diaz M (1998) Effect of surface material on initial biofilm development. Biores Technol 66:225–230

    Article  CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:47–53

    Google Scholar 

  • Breyers JD, Ratner JP (2004) Bioinspired implant materials befuddle bacteria. ASM News 70:232–237

    Google Scholar 

  • Bonaventura GD, Piccolomini R, Paludi D, D’Orio V, Vergara A, Conter M, Ianieri A (2008) Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 104:1552–1561

    Article  PubMed  Google Scholar 

  • Camper AK, Warren LJ, Jason TH (1996) Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl Environ Microbiol 62:4014–4018

    PubMed  CAS  Google Scholar 

  • Carlen A, Nikdel K, Wennerberg A, Holmberg K, Olsson J (2001) Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 22:481–487

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Zhang Z, Chen S, Bryers J, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 29:4192–4199

    Article  Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm Formation and control in food processing facilities. Comprehensive review in food science and food safety. Inst Food Technol 2:22–32

    CAS  Google Scholar 

  • Cloete TE, Westaard D, van Vuuren SJ (2003) Dynamic response of biofilm to pipe surface and fluid velocity. Water Sc iTechnol 47(5):57–59

    PubMed  CAS  Google Scholar 

  • Coleman DC, O’Donnell MJ, Shore AC, Swan J, Russell RJ (2010) The role of manufacturers in reducing biofilms in dental chair waterlines. J Dent 35:701–711

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140

    Article  PubMed  CAS  Google Scholar 

  • Dignac MF, Urbain V, Rybacki D, Bruchet A, Snidaro D, Scribe P (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci Technol 38:45–53

    CAS  Google Scholar 

  • Donlan RM (2002) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277–281

    Article  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: Seen any good biofilms lately? J Clin Microbiol 15:155–166

    Article  CAS  Google Scholar 

  • Dunsmore BC, Jacobsen A, Hall-Stoodley L, Bass CJ, Lappin-Scott HM, Stoodley P (2002) The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:347–353

    Article  PubMed  CAS  Google Scholar 

  • Faille C, Jullien C, Fontaine F, Bellon-Fontaine MN, Slomianny C, Bénézech T (2002) Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can J Microbiol 48:728–738

    Article  PubMed  CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2002) Characterization of hydrogen producing granular sludge. Biotechnol Bioeng 78:44–52

    Article  PubMed  CAS  Google Scholar 

  • Flemming HC, Wingender J, Mayer C, Kostgens V, Borchard W (2000) Cohesiveness in biofilm matrix polymers. In: Community structure and cooperation in biofilms. Press Syndicate, Cambridge, p 91

  • Flemming HC, Neu TR, Wozniak D (2007) The EPS matrix: The “house of biofilms cells”. J Bacteriol 189(22):1–6

    Article  Google Scholar 

  • Florjanic M, Kristl J (2011) The control of biofilm formation by hydrodynamics of purified water in industrial distribution system. Int J Pharm 405:16–22

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum M, O’Toole GA (2004) Microbial biofilms. American Soc Microbiol Press, Washington D.C., pp 250–268

    Google Scholar 

  • Girbal-Neuhauser E (2011) Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions. Water Res 45:1529–1538

    Article  PubMed  Google Scholar 

  • Horswill AR, Stoodley P, Stewart PS, Parsek MR (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–380

    Article  PubMed  CAS  Google Scholar 

  • Hoyle B (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. J Ant Agents Chem 36:2054–2056

    CAS  Google Scholar 

  • Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9):2916–2922

    Article  PubMed  CAS  Google Scholar 

  • Kalmokoff ML, Austin JW, Wan XD, Sanders G, Banerjee S, Farber JM (2001) Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol 91:725–734

    Article  PubMed  CAS  Google Scholar 

  • Klahre J, Flemming HC (2000) Monitoring of biofouling in papermill process. Water Res 34(14):3657–3665

    Article  CAS  Google Scholar 

  • Kristensen JB, Meyer RL, Lauren BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. J Biotechnol 26:471–481

    Article  CAS  Google Scholar 

  • Kumar A, Prasad R (2006) Biofilms. JK Sci 8:15–17

    Google Scholar 

  • Li Y, Hao G, Galvani CD, Meng Y, de la Fuente L, Hoch HC, Burr TJ (2007) Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell- cell aggregation. J Microbiol 153:719–726

    Article  CAS  Google Scholar 

  • Liu H, Fang HP (2002) Extraction of extracellular polymeric substances (EPS) of sludge. J Biotechnol 95:249–256

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Chu L, Liu Q, Wang C, Xia Y, Peng X (2010) A comparative study on biofilm formation of nontypeable Haemophilus influenzae and Pseudomonas aeruginosa under single culture or co-culture. Afr J Microbiol Res 4(3):180–184

    Google Scholar 

  • Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH (2004) The influence of cell substratum surface hydrophobicities on microbial attachment. J Biotechnol 110:251–256

    Article  PubMed  CAS  Google Scholar 

  • Mains C (2008) Biofilm control in distribution systems. Natl Environ Serv Center (NESC) 8(2):1–4

    Google Scholar 

  • Molobela IP, Cloete TE, Beukes M (2010) Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res 4(14):1515–1524

    CAS  Google Scholar 

  • Noguera DR, Okabe S, Picioreanu C (1999) Biofilm modelling: present status and future dicetions. Water Sci Technol 39(7):273–278

    Article  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Oh YJ, Jo W (2007) Biofilm formation and local electrostatic force characteristics of Escherichia coli 0157:H7 observed by electrostatic microscopy. Appl Phys Letters 90:143901

    Article  Google Scholar 

  • Pan X, Liu J, Zhang D, Chen X, Li L, Song W, Yang J (2010) A comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. Water SA 36(1):111–116

    Article  CAS  Google Scholar 

  • Pei-shi QI, Wen-bin W, Zheng, QI (2008) Effect of shear stress on biofilm morphological characteristics and the secretion of extracellular polymeric substances. School of Municipal & Environmental Engineering. Harbin Institute of Technology. Harbin, pp 3438–3441

  • Prakash B, Veeregowda BM, Krishnappa G (2003) Biofilms: A survival strategy of bacteria. J Curr Sci 85:9–10

    Google Scholar 

  • Purevdorj B, Costerton JW, Stoodley P (2002) A influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68(9):4457–4464

    Article  PubMed  CAS  Google Scholar 

  • Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W (2000) Effect of sub inhibitory antibiotic concentrations on polysaccharide intercellular adhesion expression in biofilm forming Staphylococcus epidermidis. J Ant Agents Chem 44:3357–3363

    Article  CAS  Google Scholar 

  • Rao TS (2010) Comparative effect of temperature on biofilm formation in natural and modified marine environment. Aquat Ecol 44:463–478

    Article  CAS  Google Scholar 

  • Ras M, Girbal-Neuhauser E, Paul EM, Sperandio M, Lefebvre D (2008) Protein extraction from activated sludge: An analytical approach. Water Res 42:1867–1878

    Article  PubMed  CAS  Google Scholar 

  • Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187(10):3477–85

    Article  PubMed  CAS  Google Scholar 

  • Rinaudi L, Fujishinge NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157:867–875

    Article  PubMed  CAS  Google Scholar 

  • Rochex A, Lebeault JM (2007) Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Res 41:2885–2892

    Article  PubMed  CAS  Google Scholar 

  • Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface associated growth. J Bacteriol 183:6579–6589

    Article  PubMed  CAS  Google Scholar 

  • Simoes M, Simoes LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. Food Sci Technol 43:573–583

    CAS  Google Scholar 

  • Simoes M, Pereira MO, Sillankorva S, Azeredo J, Viera MJ (2007) The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofoul 23(3/4):249–258

    Article  CAS  Google Scholar 

  • Smith AW (2005) Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery system? J Adv Drug Delivery Review 57:1539–1550

    Article  CAS  Google Scholar 

  • Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19–28

    Article  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1994) Structure- function relationship in microbial exopolysaccharides. J Biotechnol Adv 12:393–448

    Article  CAS  Google Scholar 

  • Vieira MJ, Melo LF, Pinheiro MM (1993) Biofilm formation: Hydrodynamic effects on internal diffusion and structure. J Bioad Biofilm Res 7(1):67–80

    CAS  Google Scholar 

  • Villa F, Albanese D, Giussani B, Stewart P, Daffonchio D, Cappitelli F (2010) Hindering biofilm formation with zosteric acid. Biofoul 26:739–752

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Russell JC, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  PubMed  CAS  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  PubMed  CAS  Google Scholar 

  • Yongqin JY, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of Extracellular Polymeric Substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9):2916–2922

    Article  Google Scholar 

  • Zacheus OM, Livanainen EK, Nissinen TK, Lehtola MJ, Martikainen PJ (2000) Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res 1:63–70

    Article  Google Scholar 

  • Zhang T, Fang HP (2001) Quantification of extracellular polymeric substances in biofilms by confocal laser scanning microscopy. J Biotechnol 23:405–409

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itumeleng Phyllis Molobela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molobela, I.P., Ilunga, F.M. Impact of bacterial biofilms: the importance of quantitative biofilm studies. Ann Microbiol 62, 461–467 (2012). https://doi.org/10.1007/s13213-011-0344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0344-0

Keywords

Navigation