Skip to main content
Log in

Label-Free and Real-Time Electrical Impedance Monitoring of Macrophage Polarization of THP-1 Monocytes on Indium Tin Oxide Electrode

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Macrophages are immune cells that play important roles in the human body’s initial immune responses against pathogens and tumor cells. We investigated the use of electrical impedance monitoring to assess the differentiation of THP-1 monocyte into macrophages, which is necessary for immunotherapy research conducted. The change in resistance at 1 kHz and capacitance at 100 kHz measured were proportionally increased according to not only the increase in the density of resting macrophages differentiated by Phorbol-12-myristate-13-acetate treatment but also the initial number of THP-1 cells seeded on the electrode. Additionally, real-time impedance data from THP-1 cells after 48 h of cultivation demonstrated greater recognition of the resting macrophage phenotypes (adhesion cells) covered microelectrode surface with a significant increase of impedance signal in comparison with monocytes phenotypes (suspended cells). Furthermore, during the polarization phase of macrophages, the alternatively activated macrophage phenotype was larger and flatter than that of classically activated macrophage and resting macrophage phenotypes, indicating a correlation with a higher resistance and lower capacitance impedances at 1 kHz and 100 kHz of alternatively activated macrophages (4750 Ω and – 3.5 nF) than that of classically activated macrophages (2000 Ω and – 1.5 nF) and resting macrophages (3500 Ω and – 2.0 nF), respectively. The study’s findings demonstrated that the impedance measurement system is high sensitivity and confidence in monitoring macrophages differentiation and polarization. The electrical impedance, which has significance for each macrophage phenotype, is compatible with macrophages characteristic features observed using flow cytometry and a microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aldo, P.B., Craveiro, V., Guller, S., Mor, G.: Effect of culture conditions on the phenotype of THP-1 monocyte cell line. Am. J. Reprod. Immunol. 70(1), 80–86 (2013). https://doi.org/10.1111/aji.12129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hourani, T., Perez-Gonzalez, A., Khoshmanesh, K., et al.: Label-free macrophage phenotype classification using machine learning methods. Sci. Rep. 13(1), 5202 (2023). https://doi.org/10.1038/s41598-023-32158-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krzyszczyk, P., Schloss, R., Palmer, A., Berthiaume, F.: The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. (2018). https://doi.org/10.3389/fphys.2018.00419

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mu, X., Li, Y., Fan, G.C.: Tissue-resident macrophages in the control of infection and resolution of inflammation. Shock 55(1), 14–23 (2021). https://doi.org/10.1097/SHK.0000000000001601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basso, P.J., Andrade-Oliveira, V., Câmara, N.O.S.: Targeting immune cell metabolism in kidney diseases. Nat. Rev. Nephrol. 17(7), 465–480 (2021). https://doi.org/10.1038/s41581-021-00413-7

    Article  CAS  PubMed  Google Scholar 

  6. Van Overmeire, E., Laoui, D., Keirsse, J., Van Ginderachter, J.A., Sarukhan, A.: Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front. Immunol. (2014). https://doi.org/10.3389/fimmu.2014.00127

    Article  PubMed  PubMed Central  Google Scholar 

  7. Conte, E.: Targeting monocytes/macrophages in fibrosis and cancer diseases: therapeutic approaches. Pharmacol. Ther. (2022). https://doi.org/10.1016/j.pharmthera.2021.108031

    Article  PubMed  Google Scholar 

  8. Lee, K.W., Yang, E.K., Oh, Y., Park, E., Jeong, K.Y., Yoon, H.C.: Immunogenicity monitoring cell chip incorporating finger-actuated microfluidic and colorimetric paper-based analytical functions. Biochip J. 17(3), 329–339 (2023). https://doi.org/10.1007/s13206-023-00111-5

    Article  CAS  Google Scholar 

  9. Das, A., Das, N.D., Park, J.H., et al.: Identification of survival factors in LPS-stimulated anthrax lethal toxin tolerant RAW 264.7 cells through proteomic approach. Biochip J. 7(1), 75–84 (2013). https://doi.org/10.1007/s13206-013-7112-0

    Article  CAS  Google Scholar 

  10. McWhorter, F.Y., Davis, C.T., Liu, W.F.: Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 72(7), 1303–1316 (2015). https://doi.org/10.1007/s00018-014-1796-8

    Article  CAS  PubMed  Google Scholar 

  11. Balestrieri, B., Granata, F., Loffredo, S., et al.: Phenotypic and functional heterogeneity of low-density and high-density human lung macrophages. Biomedicines (2021). https://doi.org/10.3390/biomedicines9050505

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tedesco, S., De Majo, F., Kim, J., et al.: Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol. (2018). https://doi.org/10.3389/fphar.2018.00071

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kämmerling, L., Fisher, L.E., Antmen, E., et al.: Mitigating the foreign body response through ‘immune-instructive’ biomaterials. J. Immunol. Regen Med. 12, 100040 (2021). https://doi.org/10.1016/j.regen.2021.100040

    Article  CAS  Google Scholar 

  14. Jain, N., Moeller, J., Vogel, V.: Mechanobiology of macrophages: how physical factors coregulate macrophage plasticity and phagocytosis. Annu. Rev. Biomed. Eng. (2019). https://doi.org/10.1146/annurev-bioeng-062117

    Article  PubMed  Google Scholar 

  15. Shang, Y., Li, H., Zhang, R.: Effects of pandemic outbreak on economies: evidence from business history context. Front. Public Health (2021). https://doi.org/10.3389/fpubh.2021.632043

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, L.L.W., Janes, M.E., Kumbhojkar, N., et al.: Cell therapies in the clinic. Bioeng. Transl. Med. (2021). https://doi.org/10.1002/btm2.10214

    Article  PubMed  PubMed Central  Google Scholar 

  17. El-Kadiry, A.E.H., Rafei, M., Shammaa, R.: Cell therapy: types, regulation, and clinical benefits. Front. Med. (Lausanne). (2021). https://doi.org/10.3389/fmed.2021.756029

    Article  PubMed  PubMed Central  Google Scholar 

  18. Driver, R., Mishra, S.: Organ-on-a-chip technology: an in-depth review of recent advancements and future of whole body-on-chip. BioChip J. 17(1), 1–23 (2022). https://doi.org/10.1007/S13206-022-00087-8

    Article  Google Scholar 

  19. Bai, X.: Stem cell-based disease modeling and cell therapy. Cells (2020). https://doi.org/10.3390/cells9102193

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu, R.M., Hwang, Y.C., Liu, I.J., et al.: Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. (2020). https://doi.org/10.1186/s12929-019-0592-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bashor, C.J., Hilton, I.B., Bandukwala, H., Smith, D.M., Veiseh, O.: Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 21(9), 655–675 (2022). https://doi.org/10.1038/s41573-022-00476-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jabbar, F., Kim, Y.S., Lee, S.H.: Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips. Biochip J. 16(3), 305–316 (2022). https://doi.org/10.1007/s13206-022-00068-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angeline, N., Choo, S.S., Kim, C.H., Bhang, S.H., Kim, T.H.: Precise electrical detection of curcumin cytotoxicity in human liver cancer cells. Biochip J. 15(1), 52–60 (2021). https://doi.org/10.1007/s13206-021-00002-7

    Article  CAS  Google Scholar 

  24. Giaever, I., Keese, C.R.: A morphological biosensor for mammalian cells. Nature 366(6455), 591–592 (1993). https://doi.org/10.1038/366591a0

    Article  CAS  PubMed  Google Scholar 

  25. Hung, Y.H., Chiu, W.C., Fuh, S.R., et al.: ECIS based electric fence method for measurement of human keratinocyte migration on different substrates. Biosensors (Basel) (2022). https://doi.org/10.3390/bios12050293

    Article  PubMed  Google Scholar 

  26. Park, I.H., Hong, Y., Jun, H.S., Cho, E.S., Cho, S.: DAQ based impedance measurement system for low cost and portable electrical cell-substrate impedance sensing. Biochip J. (2018). https://doi.org/10.1007/s13206-017-2103-1

    Article  Google Scholar 

  27. Oh, D.E., Kim, J.S., Hwang, I.K., Park, H.S., Lee, C.S., Kim, T.H.: Real-time detection of SARS-CoV-2 nucleocapsid antigen using data analysis software and IoT-based portable reader with single-walled carbon nanotube field effect transistor. Biochip J. 17(3), 393–401 (2023). https://doi.org/10.1007/s13206-023-00116-0

    Article  CAS  Google Scholar 

  28. Yeste, J., Illa, X., Alvarez, M., Villa, R.: Engineering and monitoring cellular barrier models. J. Biol. Eng. (2018). https://doi.org/10.1186/s13036-018-0108-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Le Ngoc, H.T., Kim, J., Park, J., Cho, S.: A review of electrical impedance characterization of cells for label-free and real-time assays. Biochip J. 13(4), 295–305 (2019). https://doi.org/10.1007/s13206-019-3401-6

    Article  CAS  Google Scholar 

  30. Gagnon, Z.R.: Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32(18), 2466–2487 (2011). https://doi.org/10.1002/elps.201100060

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, C., Lachance, B., Sunahara, G., Luong, J.H.T.: An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal. Chem. 74(6), 1333–1339 (2002). https://doi.org/10.1021/ac011104a

    Article  CAS  PubMed  Google Scholar 

  32. Xiao, C., Luong, J.H.T.: On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol. Prog. 19(3), 1000–1005 (2003). https://doi.org/10.1021/bp025733x

    Article  CAS  PubMed  Google Scholar 

  33. Gu, A.Y., Kho, D.T., Johnson, R.H., Scott Graham, E., O’Carroll, S.J.: In vitro wounding models using the electric cell-substrate impedance sensing (ECIS)-Zθ technology. Biosensors (Basel) (2018). https://doi.org/10.3390/bios8040090

    Article  PubMed  Google Scholar 

  34. Cho, S.: Electrical impedance analysis of cell growth using a parallel RC circuit model. Biochip J. 5(4), 327–332 (2011). https://doi.org/10.1007/s13206-011-5406-7

    Article  CAS  Google Scholar 

  35. Chen, S., Saeed, A.F.U.H., Liu, Q., et al.: Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. (2023). https://doi.org/10.1038/s41392-023-01452-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mezu-Ndubuisi, O.J., Maheshwari, A.: The role of integrins in inflammation and angiogenesis. Pediatr. Res. 89(7), 1619–1626 (2021). https://doi.org/10.1038/s41390-020-01177-9

    Article  PubMed  Google Scholar 

  37. Chi, Z., Melendez, A.J.: Role of cell adhesion molecules and immune-cell migration in the initiation, onset and development of atherosclerosis. Cell Adh. Migr. 1(4), 171–175 (2007). https://doi.org/10.4161/cam.1.4.5321

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rosales, C., Uribe-Querol, E.: Phagocytosis: a fundamental process in immunity. Biomed. Res. Int. (2017). https://doi.org/10.1155/2017/9042851

    Article  PubMed  PubMed Central  Google Scholar 

  39. Delgado, M., Lennon-Duménil, A.M.: How cell migration helps immune sentinels. Front. Cell Dev. Biol. (2022). https://doi.org/10.3389/fcell.2022.932472

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, J., Kim, S., Uddin, S., Lee, S.S., Park, S.: Microfabricated stretching devices for studying the effects of tensile stress on cells and tissues. Biochip J. 16(4), 366–375 (2022). https://doi.org/10.1007/s13206-022-00073-0

    Article  CAS  Google Scholar 

  41. Sreejit, G., Fleetwood, A.J., Murphy, A.J., Nagareddy, P.R.: Origins and diversity of macrophages in health and disease. Clin. Transl. Immunol. (2020). https://doi.org/10.1002/cti2.1222

    Article  Google Scholar 

  42. Cosentino-Gomes, D., Rocco-Machado, N., Meyer-Fernandes, J.R.: Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13(9), 10697–10721 (2012). https://doi.org/10.3390/ijms130910697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tonetti, D.A., Henning-Chubb, C., Yamanishi, D.T., Huberman, E.: Protein kinase C-β is required for macrophage differentiation of human HL-60 leukemia cells. J. Biol. Chem. 269(37), 23230–23235 (1994). https://doi.org/10.1016/s0021-9258(17)31643-5

    Article  CAS  PubMed  Google Scholar 

  44. Chang, S.N., Dey, D.K., Oh, S.T., et al.: Phorbol 12-myristate 13-acetate induced toxicity study and the role of tangeretin in abrogating hif-1α-nf-κb crosstalk in vitro and in vivo. Int. J. Mol. Sci. 21(23), 1–22 (2020). https://doi.org/10.3390/ijms21239261

    Article  CAS  Google Scholar 

  45. Genin, M., Clement, F., Fattaccioli, A., Raes, M., Michiels, C.: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer (2015). https://doi.org/10.1186/s12885-015-1546-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, S., So, E.C., Strome, S.E., Zhang, X.: Impact of detachment methods on M2 macrophage phenotype and function. J. Immunol. Methods 426, 56–61 (2015). https://doi.org/10.1016/j.jim.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  47. Sağraç, D., Şenkal, S., Hayal, T.B., Şahin, F., Çobandede, Z., Doğan, A.: Surface coating materials regulates the attachment and differentiation of mouse embryonic stem cell derived embryoid bodies into mesoderm at culture conditions. Cytotechnology 74(2), 293–307 (2022). https://doi.org/10.1007/s10616-022-00529-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andolfi, A., Jang, H., Martinoia, S., Nam, Y.: Thermoplasmonic scaffold design for the modulation of neural activity in three-dimensional neuronal cultures. Biochip J. 16(4), 451–462 (2022). https://doi.org/10.1007/s13206-022-00082-z

    Article  CAS  Google Scholar 

  49. Chang, S., Kim, S., Lee, D., et al.: Laser-assisted recovery of on-chip phage viral DNA for phage fluorescence immunoassay microchip. Biochip J. (2023). https://doi.org/10.1007/s13206-023-00117-z

    Article  Google Scholar 

  50. Vogel, D.Y.S., Heijnen, P.D.A.M., Breur, M., et al.: Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J. Neuroinflamm. (2014). https://doi.org/10.1186/1742-2094-11-23

    Article  Google Scholar 

  51. Rostam, H.M., Reynolds, P.M., Alexander, M.R., Gadegaard, N., Ghaemmaghami, A.M.: Image based machine learning for identification of macrophage subsets. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-03780-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Orecchioni, M., Ghosheh, Y., Pramod, A.B., Ley, K.: Macrophage polarization: different gene signatures in M1(Lps+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. (2019). https://doi.org/10.3389/fimmu.2019.01084

    Article  PubMed  PubMed Central  Google Scholar 

  53. Subauste, C.S., Malefyt, R.D.W., Fuh, F.: Role of CD80 (B7.1) and CD86 (B7.2) in the immune response to an intracellular pathogen. J. Immunol. 160(4), 1831–1840 (1998). https://doi.org/10.4049/jimmunol.160.4.1831

    Article  CAS  PubMed  Google Scholar 

  54. Murray, P.J., Wynn, T.A.: Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11(11), 723–737 (2011). https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mosser, D.M., Edwards, J.P.: Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Conde, P., Rodriguez, M., van der Touw, W., et al.: DC-SIGN+ macrophages control the induction of transplantation tolerance. Immunity 42(6), 1143–1158 (2015). https://doi.org/10.1016/j.immuni.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, J., Wang, M., Jing, C., Keep, R.F., Hua, Y., Xi, G.: Multinucleated giant cells in experimental intracerebral hemorrhage. Transl. Stroke Res. (2020). https://doi.org/10.1007/s12975-020-00790-4/Published

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zizzo, G., Cohen, P.L.: IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. J. Immunol. 190(10), 5237–5246 (2013). https://doi.org/10.4049/jimmunol.1203017

    Article  CAS  PubMed  Google Scholar 

  59. Beesetty, P., Rockwood, J., Kaitsuka, T., et al.: Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice. FEBS J. 288(11), 3585–3601 (2021). https://doi.org/10.1111/febs.15683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao, H., Antonopoulos, A., Henderson, S., et al.: Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-21814-z

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mily, A., Kalsum, S., Loreti, M.G., et al.: Polarization of m1 and m2 human monocyte-derived cells and analysis with flow cytometry upon mycobacterium tuberculosis infection. J. Vis. Exp. 2020(163), 1–20 (2020). https://doi.org/10.3791/61807

    Article  CAS  Google Scholar 

  62. Purcu, D.U., Korkmaz, A., Gunalp, S., et al.: Effect of stimulation time on the expression of human macrophage polarization markers. PLoS ONE (2022). https://doi.org/10.1371/journal.pone.0265196

    Article  Google Scholar 

  63. Shao, S.L., Cong, H.Y., Wang, M.Y., Liu, P.: The diagnostic roles of neutrophil in bloodstream infections. Immunobiology (2020). https://doi.org/10.1016/j.imbio.2019.10.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (NRF-2023R1A2C1003669), the Gachon University research fund of 2020 (GCU-202008490001) and CELLAMES Inc. (202210160001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Young Kim or Sungbo Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8360 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, DT., Pham, H.L., Le, H.T.N. et al. Label-Free and Real-Time Electrical Impedance Monitoring of Macrophage Polarization of THP-1 Monocytes on Indium Tin Oxide Electrode. BioChip J 18, 103–114 (2024). https://doi.org/10.1007/s13206-023-00132-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00132-0

Keywords

Navigation