Skip to main content
Log in

Electrostatically Self-assembled Quinazoline-based Anticancer Drugs on Negatively-charged Nanodiamonds for Overcoming the Chemoresistances in Lung Cancer Cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The nanodiamond (ND) conjugates of gefitinib (GF) and erlotinib (EL) were assembled for in vitro lung cancer treatments. The carboxylate infrared bands along with the negative surface charge of -28.3 (±2.1) mV were found efficient to conjugate the nitrogen-containing quinazoline ring drugs, due to the electrostatic interactions, resulting from the surface changes to -12.0 (±1.2) mV and -9.1 (±1.2) mV after adsorption of GF and EL on NDs, respectively. The physicochemical properties of NDs were characterized by transmission electron microcopy, X-ray diffraction, X-ray photoelectron, infrared and Raman spectroscopic tools. The size distributions of NDs after the self-assembly of GF and EL could be checked by dynamic light scattering measurements. The uptake of NDs in cancer cells was estimated by fluorescence microscopy. Cell viability appeared to decrease by 30-50% at 50 and 100 nM of GF and EL, respectively, after the treatment of PEG-assembled NDs compared to the cases using free drugs. Our ND conjugates may be potentially useful for overcoming the chemoresistances in lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, T., Lee, S.Y., Yang, J., Hwang, S.Y. & Ahn, Y. Microfluidic biochips for simple impedimetric detection of thrombin based label-free DNA aptamers. Bio-Chip J. 11, 109–115 (2017).

    CAS  Google Scholar 

  2. Pyun, J.-C., Jose, J. & Park, M. Development of a wash-free immunoassay using Escherichia coli cells with autodisplayed Z-domains. Analyst 142, 1720–1728 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Jeon, H., Lee, M., Jang, W. & Kwon, Y. Intein-mediated protein engineering for biosensor fabrication. Bio-Chip J. 10, 277–287 (2016).

    CAS  Google Scholar 

  4. Park, M., Jung, H., Jeong, Y. & Jeong, K.-H. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering, ACS Nano 11, 438–443 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Lim, D.G. et al. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int. J. Pharm. 514, 41–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Moore, L. et al. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano 10, 7385–7400 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Bertrand, J.R. et al. Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 45, 93–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, D., Li, Y., Tian, Z., Cao, R. & Yang, B. Transferrin-conjugated nanodiamond as an intracellular transporter of chemotherapeutic drug and targeting therapy for cancer cells. Ther. Deliv. 5, 511–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Lam, R. & Ho, D. Nanodiamonds as vehicles for systemic and localized drug delivery. Expert. Opin. Drug Deliv. 6, 883–895 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gibson, N.M., Luo, T.J.M., Shenderova, O., Koscheev, A.P. & Brenner, D.W. Electrostatically mediated adsorption by nanodiamond and nanocarbon particles. J. Nanopart. Res. 14, 700 (2012).

    Article  CAS  Google Scholar 

  11. Xiao, J. et al. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 34, 9648–9656 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, D. et al. PEGylated nanodiamond for chemotherapeutic drug delivery. Diam. Relat. Mater. 36, 26–34 (2013).

    Article  CAS  Google Scholar 

  13. Liu, K.K. et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Solarska-Ściuk, K. et al. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549). Chem. Biol. Interact. 222, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Chu, H.L. et al. Development of a growth-hormoneconjugated nanodiamond complex for cancer therapy. ChemMedChem 9, 1023–1029 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Chang, C.C. et al. Laser induced popcornlike conformational transition of nanodiamond as a nanoknife. Appl. Phys. Lett. 93, 033905 (2008).

    Article  CAS  Google Scholar 

  17. Kaur, R. & Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int. J. Nanomed. 8, 203–220 (2013).

    Article  CAS  Google Scholar 

  18. Zhu, Y. et al. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2, 302–312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mochalin, V.N. et al. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10, 3728–3735 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Brugger, W. & Thomas, M. EGFR-TKI resistant nonsmall cell lung cancer (NSCLC): new developments and implications for future treatment. Lung Cancer 77, 2–8 (2012).

    Article  PubMed  Google Scholar 

  21. Sharma, S.V., Bell, D.W., Settleman, J. & Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nobili, S., Landini, I., Mazzei, T. & Mini, E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med. Res. Rev. 32, 1220–1262 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lam, A.T.N. et al. Adsorption and desorption of tyrosine kinase inhibitor erlotinib on gold nanoparticles. J. Colloids Interface Sci. 425, 96–101 (2014).

    Article  CAS  Google Scholar 

  24. Lam, A.T.N. et al. Colloidal gold nanoparticle conjugates of gefitinib. Col. Surf. B 123, 61–67 (2014).

    Article  CAS  Google Scholar 

  25. Xiao, J. et al. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 34, 9648–9656 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Li, W.M., Mayer, L.D. & Bally, M.B. Prevention of antibody-mediated elimination of ligand-targeted liposomes by using poly(ethylene glycol)-modified lipids. J. Pharmacol. Exp. Ther. 300, 976–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Varsányi, G. Assignments for vibrational spectra of seven hundred benzene derivatives. Halsted Press Book 1, 27–28 (1974).

    Google Scholar 

  28. Mochalin, V.N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).

    Article  CAS  Google Scholar 

  29. Ferrari, A.C. & Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. Lond. A 362, 2477–2512 (2004).

    Article  CAS  Google Scholar 

  30. Nguyen, T., Tekrony, A., Yaehne, K. & Cramb, D.T. Designing a better theranostic nanocarrier for cancer applications. Nanomedicine 9, 2371–2386 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Jeong, S. et al. Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. J. Mater. Chem. 21, 13853–13859 (2011).

    Article  CAS  Google Scholar 

  32. Kim, H. et al. Multiscale simulation as a framework for the enhanced design of nanodiamond-polyethylenimine-based gene delivery. J. Phys. Chem. Lett. 3, 3791–3797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).

    Article  Google Scholar 

  34. Choi, S.Y. et al. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. J. Nanopart. Res. 14, 1234 (2012).

    Article  CAS  Google Scholar 

  35. Reina, G. et al. Rhodamine/nanodiamond as a system model for drug carrier. J. Nanosci. Nanotechnol. 15, 1022–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Kemnitz, K., Tamai, N., Yamazaki, I., Nakashima, N. & Yoshihara, K. Fluorescence decays and spectral properties of rhodamine B in submono-, mono-, and multilayer systems. J. Phys. Chem. 90, 5094–5101 (1986).

    Article  CAS  Google Scholar 

  37. Van der Auweraer, M., Verschuere, B. & De Schryver, F.C. Absorption and fluorescence properties of rhodamine B derivatives forming Langmuir-Blodgett films. Langmuir 4, 583–588 (1988).

    Article  Google Scholar 

  38. Man, H.B. et al. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine 10, 359–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Coldren, C.D. et al. Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines. Mol. Cancer Res. 4, 521–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Perevedentseva, E. et al. Nanodiamond internalization in cells and the cell uptake mechanism. J. Nanoparticle. Res. 15, 1834 (2013).

    Article  CAS  Google Scholar 

  41. Choi, S.Y. et al. In vitro toxicity of serum protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. Toxicology In Vitro 26, 229–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Sadauskas, E. et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chol, H.S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Woo Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, A.T.N., Yoon, JH., Ly, N.H. et al. Electrostatically Self-assembled Quinazoline-based Anticancer Drugs on Negatively-charged Nanodiamonds for Overcoming the Chemoresistances in Lung Cancer Cells. BioChip J 12, 163–171 (2018). https://doi.org/10.1007/s13206-017-2209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-2209-5

Keywords

Navigation