Skip to main content
Log in

Propagating behavior comparison of analytes and background electrolytes in a concentration polarization process

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Concentration polarization (CP) is an electrochemical phenomenon related to the concentration gradient (under a transversal electric field) near an ion selective membrane surface. During concentration polarization process, quantitatively investigate the background electrolyte (BGE) concentration distribution is a very challenging problem. In this study, we conducted transient simulations within 2D micro-nanochannel domain to capture the dynamic nature of concentration polarization process and compared the propagating behavior of analytes and BGE. The simulation results show that the depletion area of chloride ion and analyte are both increase with time at ohmic and limiting region. The normalized depletion area (NDA) differences increases with decreasing BGE concentration. For the high applied voltage (overlimiting region), chloride ion and analyte at the anodic side microchannel are depleted everywhere that the NDA tends to 1 after an increasing step because of the electroconvection effect. This means there is no depletion area (DA) differences between two species in this plateau region. These results tell us the fluorescent ion indicator can’t show the exact BGE concentration distribution during CP process and we need to find new technique to visualize the concentration field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubinstein, I. & Zaltzman, B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62, 2238–2251 (2000).

    Article  CAS  Google Scholar 

  2. Zaltzman, B. & Rubinstein, I. Electro-osmotic slip and electroconvective instability. J. Fluid. Mech. 579, 173–226 (2007).

    Article  Google Scholar 

  3. Schoch, R., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    Article  CAS  Google Scholar 

  4. Zangle T.A., Mani A. & Santiago J.G. Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem. Soc. Rev. 39, 1014–1035 (2010).

    Article  CAS  Google Scholar 

  5. Rubinstein, S.M. et al. Direct observation of a nonequilibrium electro-osmotic instability. Phys. Rev. Lett. 101, 236101 (2008).

    Article  CAS  Google Scholar 

  6. Wang, Y.-C., Stevens, A.L. & Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  7. Kim, S.M., Burns, M.A. & Hasselbrink, E.F. Electrokinetic protein preconcentration using a simple glass/ poly(dimethylsiloxane) microfluidic chip. Anal. Chem. 78, 4779–4785 (2006).

    Article  CAS  Google Scholar 

  8. Kim, D., Raj, A., Zhu, L., Masel, R.I. & Shannon, M.A. Non-equilibrium electrokinetic micro/nano fluidic mixer. Lab. Chip. 8, 625–628 (2008).

    Article  CAS  Google Scholar 

  9. Lee, S. & Kim, D. Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluid. Nanofluidics. 12, 897–906 (2012).

    Article  CAS  Google Scholar 

  10. Kim, S.J., Ko, S.H., Kang, K.H. & Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297–301 (2010).

    Article  CAS  Google Scholar 

  11. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  12. Stein, D., Kruithof, M. & Dekker, C. Surface-chargegoverned ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 35901 (2004).

    Article  Google Scholar 

  13. Plecis, A., Schoch, R.B. & Renaud, P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 5, 1147–1155 (2005).

    Article  CAS  Google Scholar 

  14. Schoch, R.B. & Renaud, P. Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 86, 253111 (2005).

    Article  Google Scholar 

  15. Kim, S.J., Wang, Y.-C., Lee, J.H., Jang, H. & Han, J. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 99, 44501 (2007).

    Article  Google Scholar 

  16. Yossifon, G. & Chang, H.-C. Selection of nonequilibrium overlimiting currents: Universal depletion layer formation dynamics and vortex instability. Phys. Rev. Lett. 101, 254501 (2008).

    Article  Google Scholar 

  17. Kim, D. & Darve, E. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys. Rev. E 73, 51203 (2006).

    Article  Google Scholar 

  18. Probstein, R.F. Physicochemical Hydrodynamics: An Introduction (Wiley-Interscience, 1994).

    Book  Google Scholar 

  19. Nitsche, J.M., Chang, H.-C., Weber, P.A. & Nicholson, B.J. A transient diffusion model yields unitary gap junctional permeabilities from images of cell-tocell fluorescent dye transfer between Xenopus oocytes. Biophys. J. 86, 2058–2077 (2004).

    Article  CAS  Google Scholar 

  20. www.lifetechnologies.com/kr/ko/home/life-science/cell-analysis/fluorophores/alexa-fluor-488

  21. Jin, X., Joseph, S., Gatimu, E.N., Bohn, P.W. & Aluru, N.R. Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir 23, 13209–13222 (2007).

    Article  CAS  Google Scholar 

  22. Postler, T., Slouka, Z., Svoboda, M., Pribyl, M. & Šnita, D. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. J. Colloid Interface Sci. 320, 321–332 (2008).

    Article  CAS  Google Scholar 

  23. Plecis, A., Nanteuil, C., Haghiri-Gosnet, A.-M. & Chen, Y. Electropreconcentration with charge-selective nanochannels. Anal. Chem. 80, 9542–9550 (2008).

    Article  CAS  Google Scholar 

  24. Jia, M. & Kim, T. Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices. Anal. Chem. 86, 7360–7367 (2014).

    Article  CAS  Google Scholar 

  25. Scarff, B., Escobedo, C. & Sinton, D. Radial sample preconcentration. Lab Chip 11, 1102–1109 (2011).

    Article  CAS  Google Scholar 

  26. Chein, R. & Liao, Y. Transient electrokinetic transport in micro/nanofluidic systems with sudden expansion and contraction cross sections. J. Appl. Phys. 113, 124307 (2013).

    Article  Google Scholar 

  27. Druzgalski, C.L., Andersen, M.B. & Mani, A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25, 110804 (2013).

    Article  Google Scholar 

  28. Hlushkou, D., Dhopeshwarkar, R., Crooks, R.M. & Tallarek, U. The influence of membrane ion permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units. Lab Chip 8, 1153–1162 (2008).

    Article  CAS  Google Scholar 

  29. Dhopeshwarkar, R., Hlushkou, D., Nguyen, M., Tallarek, U. & Crooks, R.M. Electrokinetics in microfluidic channels containing a floating electrode. J. Am. Chem. Soc. 130, 10480–10481 (2008).

    Article  CAS  Google Scholar 

  30. Hlushkou, D., Perdue, R.K., Dhopeshwarkar, R., Crooks, R.M. & Tallarek, U. Electric field gradient focusing in microchannels with embedded bipolar electrode. Lab Chip 9, 1903–1913 (2009).

    Article  CAS  Google Scholar 

  31. Yossifon, G., Mushenheim, P., Chang, Y.-C. & Chang, H.-C. Nonlinear current-voltage characteristics of nanochannels. Phys. Rev. E 79, 46305 (2009).

    Article  Google Scholar 

  32. Zangle, T.A., Mani, A. & Santiago, J.G. Effects of constant voltage on time evolution of propagating concentration polarization. Anal. Chem. 82, 3114–3117 (2010).

    Article  CAS  Google Scholar 

  33. Pham, V.S., Li, Z., Lim, K.M., White, J.K. & Han, J. Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane. Phys. Rev. E 86, 46310 (2012).

    Article  Google Scholar 

  34. Shkolnikov, V. & Santiago, J.G. A method for non-invasive full-field imaging and quantification of chemical species. Lab Chip 13, 1632–1643 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daejoong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Kim, D. Propagating behavior comparison of analytes and background electrolytes in a concentration polarization process. BioChip J 11, 121–130 (2017). https://doi.org/10.1007/s13206-016-1110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-1110-y

Keywords

Navigation