Skip to main content
Log in

Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Environmental pollution has become a serious problem at a global level because of its widespread and long-term harm. Contamination by heavy metal ions and toxic heavy metals, including zinc, copper, nickel, mercury, cadmium, and lead, causes significant long-term damage to many biological systems because these metals disrupt biological activities at the cellular level. Lead is one of the most abundant metals on earth. However, lead poisoning has been related to several diseases associated with environmental pollution. Therefore, it is essential to detect and remove lead ions from aqueous solutions. Water-soluble and stable cethyltrimetylammonium bromide (CTAB)-capped gold nanoparticles (AuNPs) were applied for the sensitive detection of Pb2+. These CTAB-capped AuNPs were employed to selectively detoxify heavy-metal ions such as Pb2+ ions. Detailed studies using UV/visible spectroscopy, electron microscopy, and dynamic light scattering showed that competitive binding of Pb2+ with the CTAB-capped AuNPs changed the surface properties in the presence of sodium thiosulfate (S2O 2-3 ). This system is able to detect Pb2+ with a detection limit as low as 20 nM. This method has a great potential for the simple and rapid detection of lead ions with ultrasensitive and excellent selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh, R., Gautam, N., Mishra, A. & Gupta, R. Heavy Metals and Living Systems: An Overview. Indian J. Pharmacol. 43, 246–253 (2011).

    Article  CAS  Google Scholar 

  2. Valko, M., Morris, H. & Cronin, M.T. Metal, Toxicity and Oxidative Stress. Curr. Med. Chem. 12, 1161–1208 (2005).

    Article  CAS  Google Scholar 

  3. Huang, C.C., Hung, Y., Hsiung, T., Chen, Y. & Huang, Y. Colorimetric Detection of Heavy Metal Ions Using Label-Free Gold Nanoparticles and Alkanethiols. Phys. J. Chem. 144, 16329–16334 (2010).

    Google Scholar 

  4. Bhatt, I. & Tripathi, B. Interation of Enginerred Nanoparticles with Various Components of the Environment and Possible Strategies for their Risk Assessment. Chemosphere 82, 308–317 (2011).

    Article  CAS  Google Scholar 

  5. Landrigan, P.J. & Todd, A.C. Lead Poisoning. West. J. Med. 161, 153–159 (1994).

    CAS  Google Scholar 

  6. Barbosa, F., Tanus-Santos, J.E., Gerlach, R.F. & Parsons, P.J. A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs. Environ. Health Perspect. 113, 1669–1674 (2005).

    Article  CAS  Google Scholar 

  7. Wilson, R. The Use of Gold Nanoparticles in Diagnostics and Detection. Chem. Soc. Rev. 37, 2028–2045 (2008).

    Article  CAS  Google Scholar 

  8. Hu, M. et al. Gold Nanostructures: Engineering their Plasmonic Properties for Biomedical Applications. Chem. Soc. Rev. 35, 1084–1094 (2006).

    Article  CAS  Google Scholar 

  9. Kim, H.-S. & Oh, B.-K. A Rapid and Sensitive Immunoassay for Detection of E. coli O157:H7 Using Multienzyme-Au Nanoparticle complex. Bio Chip J. 8, 1–7 (2014).

    CAS  Google Scholar 

  10. Sepúlveda, B., Angelomé, P.C., Lechuga, L.M. & Liz-Marzán, L.M. LSPR-based Nanobiosensor. Nano Today 3, 244–251 (2009).

    Article  Google Scholar 

  11. Wang, X.H. et al. Gold Nanorod-based Localized Surface Plasmon Resonance Biosensor for Sensitive Detection of Hepatitis B Virus in Buffer Blood Serum and Plasma. Biosens. Bioelectron. 26, 404–410 (2010).

    Article  Google Scholar 

  12. Tu, M.H., Sun, T. & Grattan, K.T.V. Optimization of Gold-Nanoparticle based Optical Fiber Surface Plasmon Resonance (SPR)-based Sensors. Sensor. Actuat. B-Chem. 164, 43–53 (2012).

    Article  CAS  Google Scholar 

  13. Nusz, G.J., Curry, A.C., Marinakos, S.M., Wax, A. & Chilkoti, A. Rational Selection of Gold Nanorod Geometry for Label-Free Plasmonic Biosensors. ACS Nano 3, 795–806 (2009).

    Article  CAS  Google Scholar 

  14. Lee, S., Mayer, K.M. & Hafner, J.H. Improved Localized Surface Plasmon Resonance Immunoassay with Gold Bipyramid Substrates. Anal. Chem. 81, 4450–4455 (2009).

    Article  CAS  Google Scholar 

  15. Shon, Y.S. et al. Stability and Morphology of Gold Nanoisland Arrays Generated from Layer-By-Layer Assembled Nanoparticle Multilayer Films: Effects of Heating Temperature and Particle Size. Phys. J. Chem. 115, 10597–10605 (2011).

    CAS  Google Scholar 

  16. Szunerits, S. & Boukherroub, R. Sensing Using Localised Surface Plasmon Resonance Sensors. Chem. Commun. 48, 8999–9010 (2012).

    Article  CAS  Google Scholar 

  17. Goubet, N., Ding, Y., Brust, M., Wang, Z.L. & Pileni, M.P. A Way to Control the Gold Nanocrystals Size: Using Seeds with Different Sizes and Subjecting them to Mild Annealing. ACS Nano 3, 3622–3628 (2009).

    Article  CAS  Google Scholar 

  18. Cheng, W., Dong, S. & Wang, E. Synthesis and Self-Assembly of Cetyltrimethylammonium Bromide-Capped Gold Nanoparticles. Langmuir 19, 9334–9439 (2003).

    Article  Google Scholar 

  19. Yu, C., Varghesse, L. & Irudayaraj, J. Surface Modification of Cetyltrimethylammonium Bromide-Capped Gold Nanorods to Make Molecular Probes. Langmuir 23, 9114–9119 (2007).

    Article  CAS  Google Scholar 

  20. Liu, X. & Abbott, N.L. Characterization of the Nanostructure of Complexes Formed by Single-or Double-Stranded Oligonucleotides with a Cationic Surfactant. J. Phys. Chem. B. 114, 15554–155564 (2010).

    Article  CAS  Google Scholar 

  21. Senanayake, G. Catalytic Role of Ammonia in the Anodic Oxidation of Gold in Copper-Free Thiosulfate Solutions. Hydrometallurgy 77, 287–293 (2005).

    Article  CAS  Google Scholar 

  22. Feng, D. & van Deventer, J.S.J. The Role of Heavy Metal Ions in Gold Dissolution in the Ammoniacal Thiosulphate System. Hydrometallurgy 64, 231–246 (2002).

    Article  CAS  Google Scholar 

  23. Grosse, A.C., Dicinoski, G.W., Shaw, M.J. & Haddad P.R. Leaching and Recovery of Gold Using Ammoniacal Thiosulfate Leach Liquors (a review). Hydrometallurgy 69, 1–21 (2003).

    Article  CAS  Google Scholar 

  24. Jin, L.H. & Han, C.S. Ultrasensitive and Selective Fluorimetric Detection of Copper Ions Using Thiosulfate-Involved Quantum Dots. Anal. Chem. 86, 7209–7213 (2014).

    Article  CAS  Google Scholar 

  25. Kim, M.S., Kim, G.W. & Park, T.J. A Facile and Sensitive Detection of Organophosphorus Chemicals by Rapid Aggregation of Gold Nanoparticles Using Organic Compounds. Biosens. Bioelectron. 67, 408–412 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Jung Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.L.T., Kim, E.J., Chang, SK. et al. Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles. BioChip J 10, 65–73 (2016). https://doi.org/10.1007/s13206-016-0109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0109-8

Keywords

Navigation