Skip to main content
Log in

Microfabricated, continuous-flow, microbial three-electrode cell for potential toxicity detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Bioelectrochemical microfluidic devices are developed based on the continuous flow mode of membrane-less, microbial three-electrode cells (M3Cs). These novel devices are the miniaturized microfluidic-based three-electrode cells for the first time, and these are composed of an Ag/AgCl reference electrode, indium tin oxide anode and cathode electrodes. The basic performance of the devices is tested using biofilms grown from wastewater inoculum in an experiment that senses for toxic materials. The toxic materials used are: sodium cyanide, imidazole, and sodium azide in concentrations of 0.02–0.8 mM, with lactate and sodium acetate functioning as substrates. While a constant potential of 0.2 V is applied to the working electrodes of the device, the bioelectrocatalytic oxidation current is monitored at 35°C. When the biocides are introduced, the response current from the cell decreases. The sensor can detect imidazole at the range of 0.02–0.4 mM. The experimental results show the potential of using microfluidic-based microbial electrolysis cells not only as biocide sensors, but also as investigative tools for microbial electrochemical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovley, D.R. Bug juice: Harvesting electricity with microorganisms. Nat. Rev. Microbial. 4, 497–508 (2006).

    Article  CAS  Google Scholar 

  2. Logan, B.E. & Regan, J.M. Microbial challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006).

    Article  CAS  Google Scholar 

  3. Clauwaert, P. et al. Minimizing losses in bio-electrochemical systems: the road to applications. Appl. Microbial Biotechnol. 79, 901–913 (2008).

    Article  CAS  Google Scholar 

  4. Wang, H. & Ren, Z.J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–1807 (2013).

    Article  Google Scholar 

  5. Yoon, S.-M. et al. Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell. J. Microbiol. Biotechnol. 17, 110–115 (2007).

    CAS  Google Scholar 

  6. Patil, S. et al. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresour. Technol. 102, 9683–9690 (2011).

    Article  CAS  Google Scholar 

  7. Patil, S., Harnish, F. & Schröder, U. Toxicity response of electroactive microbial biofilms-A decisive feature for potential biosensor and power source applications. ChemPhysChem. 11, 2834–2837 (2010).

    Article  CAS  Google Scholar 

  8. Dávila, D., Esquivel, J.P. & Sabaté, N. Silicon-based microfabricated microbial fuel cell toxicity sensor. J. Mas, Biosens. Bioelectron. 26, 2426–2430 (2011).

    Article  Google Scholar 

  9. Chiao, M., Lam, K.B. & Lin, L. Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 16, 2547–2553 (2006).

    Article  CAS  Google Scholar 

  10. Choi, S. et al. A μL-scale micromachined microbial fuel cell having high power density. Lab Chip 11, 1110–1117 (2011).

    Article  CAS  Google Scholar 

  11. Chen, Y.-P. et al. An innovative miniature microbial fuel cell fabricated using photolithography. Biosens. Bioelectron. 26, 2841–2846 (2011).

    Article  CAS  Google Scholar 

  12. Qian, F., He, Z., Thelen, M.P. & Li, Y. A microfluidic microbial fuel cell fabricated by soft lithography. Bioresour. Technol. 102, 5836–5840 (2011).

    Article  CAS  Google Scholar 

  13. Hou, H. et al. A microfluidic microbial fuel cell array that support long-term multiplexed analyses of electricigens. Lab Chip 12, 4151–4159 (2012).

    Article  CAS  Google Scholar 

  14. Li, Z., Venkataraman, A., Rosenbaum, M.A. & Angenent, L.T. A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem. 5, 1119–1123 (2012).

    Article  CAS  Google Scholar 

  15. Patil, S., Harnish, F., Kapadnis, B. & Schröder, U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance. Biosens. Bioelectron. 26, 803–808 (2010).

    Article  CAS  Google Scholar 

  16. Jain, A., Connolly, J.O., Woolley, R., Krishnamurthy, S. & Marsili, E. Extracellular electron transfer mechanism in shewanella loihica PV-4 biofilms formed at indium tin oxide and graphite electrodes. Int. J. Electrochem. Sci. 8, 1778–1793 (2013).

    CAS  Google Scholar 

  17. Giller, K.E., Witter, E. & Mcgrath, S.P. Toxicity of heavy metals t microorganisms and microbial processes in agricultural solils: A review. Soil Biol. Biochem. 30, 1389–1414 (1998).

    Article  CAS  Google Scholar 

  18. Gadd, G.M. & Griffiths, A.J. Microorganisms and heavy-metal toxicity. Microb. Ecol. 4, 303–317 (1978).

    Article  CAS  Google Scholar 

  19. Cho, C.-H., Cho, W., Ahn, Y. & Hwan, S.-Y. PDMS-glass serpentine microchannel chip for time domain PCR with bubble suppression in sample injection. J. Micromech. Microeng. 17, 1810–1817 (2007).

    Article  CAS  Google Scholar 

  20. Polk, B.J., Stelzenmuller, A., Mijares, G., MacCrehan, W. & Gaitan, M. Ag/AgCl microelctrodes with improved stability for microfluidics. Sens. Actuator B-Chem. 114, 239–247 (2006).

    Article  CAS  Google Scholar 

  21. Ko, Y.-J. et al. Real-time immunoassay with a PDMS-glass hybrid microfilter electro-immunosensing chip using nanogold particles and silver enhancement. Sens. Actuator B-Chem. 132, 327–333 (2008).

    Article  CAS  Google Scholar 

  22. Liu, Y., Harnisch, F., Fricke, K., Sietmann, R. & Schröder, U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 24, 1012–1017 (2008).

    Article  Google Scholar 

  23. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R. & Wolfe, R.S. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260–296 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoomin Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y., Schröder, U. Microfabricated, continuous-flow, microbial three-electrode cell for potential toxicity detection. BioChip J 9, 27–34 (2015). https://doi.org/10.1007/s13206-014-9104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-9104-0

Keywords

Navigation