Skip to main content
Log in

Expression profile analysis of human umbilical vein endothelial cells treated with salvianolic acid B from Salvia miltiorrhiza

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Salvianolic acid B (SalB) is a bioactive component in Salvia miltiorrhiza, which is widely used as a traditional oriental medicine for treatment of cardiovascular disorders. As it is known to have cardioprotective effects and anti-inflammatory activities, it has been used for treatment of several vascular diseases. However, the precise mechanism of SalB at the transcriptional level has not so far been determined. In this study, we investigated target genes of SalB in human umbilical vein endothelial cells (HUVECs) by microarray gene expression profiling that allows a global view of gene expression. Among more than 40,000 genes investigated, 140 genes were up-regulated more than 1.7-fold, while 167 genes were down-regulated with altered expression levels of 2-fold. According to their functional characteristics, genes were classified into seven categories. We also showed the distribution of functional groups of target genes in SalB-treated HUVECs. Furthermore, cardiovascular disease-related genes, including PDGS2, TNFSF12, and IFNG, were also altered by SalB. These results suggest that SalB may exert a vasculoprotective effect through transcriptional change of inflammatory genes. In conclusion, our data suggest that these changes in gene expression mediate the anti-inflammatory activities of SalB on vasculopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S.X., Hu, L.M., Gao, X.M., Guo, H. & Fan, G.W. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem. Res. 35, 1029–1037 (2010).

    Article  CAS  Google Scholar 

  2. Zhou, Z., Liu, Y., Miao, A.D. & Wang, S.Q. Salvianolic acid B attenuates plasminogen activator inhibitor type 1 production in TNF-alpha treated human umbilical vein endothelial cells. J. Cell. Biochem. 96, 109–116 (2005).

    Article  CAS  Google Scholar 

  3. Chen, Y.L. et al. Salvianolic acid B attenuates cyclooxygenase-2 expression in vitro in LPS-treated human aortic smooth muscle cells and in vivo in the apolipoprotein-E-deficient mouse aorta. J. Cell. Biochem. 98, 618–631 (2006).

    Article  CAS  Google Scholar 

  4. Liu, C.S., Chen, N.H. & Zhang, J.T. Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine 14, 492–497 (2007).

    Article  CAS  Google Scholar 

  5. Lam, F.F., Yeung, J.H., Kwan, Y.W., Chan, K.M. & Or, P.M. Salvianolic acid B, an aqueous component of danshen (Salvia miltiorrhiza), relaxes rat coronary artery by inhibition of calcium channels. Eur. J. Pharmacol. 553, 240–245 (2006).

    Article  CAS  Google Scholar 

  6. Zhou, Y., Gu, J. & Xu, L.M. Effect and mechanism of salvianolic acid B in attenuating elevated portal pressure in a rat model of portal hypertension induced by endothelin-1. Chin. J. Integr. Med. 5, 61–64 (2007).

    CAS  Google Scholar 

  7. Liu, C.L. et al. Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling. PLoS One 2, e1321 (2007).

    Article  Google Scholar 

  8. Tian, T. & Xu, L.M. Effects of Salviae miltiorrhizae and salvianolic acid B on microcirculation of liver in mice with portal hypertension. Chin. J. Integr. Med. 7, 151–156 (2009).

    Article  CAS  Google Scholar 

  9. Lin, S.J. et al. Salvianolic acid B attenuates MMP-2 and MMP-9 expression in vivo in apolipoprotein-Edeficient mouse aorta and in vitro in LPS-treated human aortic smooth muscle cells. J. Cell. Biochem. 100, 372–384 (2007).

    Article  CAS  Google Scholar 

  10. Chen, Y.H. et al. Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-alpha-treated human aortic endothelial cells. J. Cell. Biochem. 82, 512–521 (2001).

    Article  CAS  Google Scholar 

  11. Yan, Q., Yao-Cheng, R., Li, Z., Tie-Jun, L. & Wei-Dong, Z. VEGF induced hyperpermeability in bovine aortic endothelial cell and inhibitory effect of salvianolic acid B. Acta Pharmacologica Sinica 22, 117–120 (2001).

    Google Scholar 

  12. Ding, M., Ye, T.X., Zhao, G.R., Yuan, Y.J. & Guo, Z.X. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factor-alpha. Int. Immunopharmacol. 5, 1641–1651 (2005).

    Article  CAS  Google Scholar 

  13. Wu, H.L. et al. Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc. Res. 81, 148–158 (2009).

    Article  CAS  Google Scholar 

  14. Zhang, H.S. & Wang, S.Q. Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species. J. Mol. Cell. Cardiol. 41, 138–148 (2006).

    Article  CAS  Google Scholar 

  15. Zhao, J.F. et al. Effect of salvianolic acid B on Smad3 expression in hepatic stellate cells. Hepatobiliary Pancreat. Dis. Int. 3, 102–105 (2004).

    CAS  Google Scholar 

  16. Sumpio, B.E., Riley, J.T. & Dardik, A. Cells in focus: endothelial cell. Int. J. Biochem. Cell. Biol. 34, 1508–1512 (2002).

    Article  CAS  Google Scholar 

  17. Fonseca, V., Desouza, C., Asnani, S. & Jialal, I. Nontraditional risk factors for cardiovascular disease in diabetes. Endocr. Rev. 25, 153–175 (2004).

    Article  CAS  Google Scholar 

  18. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  Google Scholar 

  19. Dandona, P., Aljada, A., Chaudhuri, A. & Bandyopadhyay, A. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J. Clin. Endocrinol. Metab. 88, 2422–2429 (2003).

    Article  CAS  Google Scholar 

  20. Cotran, R.S. & Pober, J.S. Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J. Am. Soc. Nephrol. 1, 225–235 (1990).

    CAS  Google Scholar 

  21. Kofler, S., Nickel, T. & Weis, M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin. Sci. (Lond) 108, 205–213 (2005).

    Article  CAS  Google Scholar 

  22. Trevino, V., Falciani, F. & Barrera-Saldana, H.A. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol. Med. 13, 527–541 (2007).

    Article  CAS  Google Scholar 

  23. Archacki, S.R. & Wang, Q.K. Microarray analysis of cardiovascular diseases. Methods Mol. Med. 129, 1–13 (2006).

    CAS  Google Scholar 

  24. Hiltunen, M.O. et al. Changes in gene expression in atherosclerotic plaques analyzed using DNA array. Atherosclerosis 165, 23–32 (2002).

    Article  CAS  Google Scholar 

  25. Libby, P., Ridker, P.M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  Google Scholar 

  26. Esposito, K. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 2067–2072 (2002).

    Article  CAS  Google Scholar 

  27. Yuuki, T. et al. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J. Diabetes. Complications 15, 257–259 (2001).

    Article  CAS  Google Scholar 

  28. Bishop-Bailey, D., Mitchell, J.A. & Warner, T.D. COX-2 in cardiovascular disease. Arterioscler Thromb. Vasc. Biol. 26, 956–958 (2006).

    Article  CAS  Google Scholar 

  29. Cipollone, F. & Fazia, M.L. Cyclooxygenase-2 inhibition: vascular inflammation and cardiovascular risk. Curr. Atheroscler Rep. 8, 245–251 (2006).

    Article  CAS  Google Scholar 

  30. Chenevard, R. et al. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 107, 405–409 (2003).

    Article  Google Scholar 

  31. Kellogg, A.P., Converso, K., Wiggin, T., Stevens, M. & Pop-Busui, R. Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. Am. J. Physiol. Heart Circ. Physiol. 296, H453–461 (2009).

    Article  CAS  Google Scholar 

  32. Saas, P. et al. TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 32, 102–107 (2000).

    Article  CAS  Google Scholar 

  33. Campbell, S., Michaelson, J., Burkly, L. & Putterman, C. The role of TWEAK/Fn14 in the pathogenesis of inflammation and systemic autoimmunity. Front Biosci. 9, 2273–2284 (2004).

    Article  CAS  Google Scholar 

  34. Chicheportiche, Y. et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J. Biol. Chem. 272, 32401–32410 (1997).

    Article  CAS  Google Scholar 

  35. Ortiz, A. et al. Considering TWEAK as a target for therapy in renal and vascular injury. Cytokine Growth. Factor. Rev. 20, 251–258 (2009).

    Article  CAS  Google Scholar 

  36. Ebihara, N. et al. Proinflammatory effect of TWEAK/Fn14 interaction in human retinal pigment epithelial cells. Curr. Eye. Res. 34, 836–844 (2009).

    Article  CAS  Google Scholar 

  37. Kim, S.H. et al. TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ. J. 68, 396–399 (2004).

    Article  CAS  Google Scholar 

  38. Gajewski, T.F., Goldwasser, E. & Fitch, F.W. Antiproliferative effect of IFN-gamma in immune regulation. II. IFN-gamma inhibits the proliferation of murine bone marrow cells stimulated with IL-3, IL-4, or granulocyte-macrophage colony-stimulating factor. J. Immunol. 141, 2635–2642 (1988).

    CAS  Google Scholar 

  39. Munro, J.M., Pober, J.S. & Cotran, R.S. Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am. J. Pathol. 135, 121–133 (1989).

    CAS  Google Scholar 

  40. Li, J.H. et al. Interferon-gamma augments CD95 (APO-1/Fas) and pro-caspase-8 expression and sensitizes human vascular endothelial cells to CD95-mediated apoptosis. Am. J. Pathol. 161, 1485–1495 (2002).

    Article  CAS  Google Scholar 

  41. Leeuwenberg, J.F., von Asmuth, E.J., Jeunhomme, T.M. & Buurman, W.A. IFN-gamma regulates the expression of the adhesion molecule ELAM-1 and IL-6 production by human endothelial cells in vitro. J. Immunol. 145, 2110–2114 (1990).

    CAS  Google Scholar 

  42. Lombardi, A. et al. Molecular mechanisms underlying the pro-inflammatory synergistic effect of tumor necrosis factor alpha and interferon gamma in human microvascular endothelium. Eur. J. Cell. Biol. 88, 731–742 (2009).

    Article  CAS  Google Scholar 

  43. Lee, S.H. et al. Identification of atherosclerosis related gene expression profiles by treatment of Benzo(a) pyrene in human umbilical vein endothelial cells. Mol. Cell. Toxicol. 5, 113–119 (2009).

    Google Scholar 

  44. Park, Y.S. et al. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler Thromb. Vasc. Biol. 27, 1319–1325 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Lee, S.E., Ryu, D.S. et al. Expression profile analysis of human umbilical vein endothelial cells treated with salvianolic acid B from Salvia miltiorrhiza . BioChip J 5, 47–55 (2011). https://doi.org/10.1007/s13206-011-5108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-011-5108-1

Keywords

Navigation