Skip to main content
Log in

Rapid induction of dopaminergic neuron-like cells from human fibroblasts by autophagy activation with only 2-small molecules

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The dopaminergic neurons are responsible for the release of dopamine. Several diseases that affect motor function, including Parkinson's disease (PD), are rooted in inadequate dopamine (DA) neurotransmission. The study's goal was to create a quick way to make dopaminergic neuron-like cells from human fibroblasts (hNF) using only two small molecules: hedgehog pathway inhibitor 1 (HPI-1) and neurodazine (NZ). Two small compounds have been shown to induce the transdifferentiation of hNF cells into dopaminergic neuron-like cells. After 10 days of treatment, hNF cells had a big drop in fibroblastic markers (Col1A1, KRT18, and Elastin) and a rise in neuron marker genes (TUJ1, PAX6, and SOX1). Different proteins and factors related to dopaminergic neurons (TH, TUJ1, and dopamine) were significantly increased in cells that behave like dopaminergic neurons after treatment. A study of the autophagy signaling pathway showed that apoptotic genes were downregulated while autophagy genes (LC3, ATG5, and ATG12) were significantly upregulated. Our results showed that treating hNF cells with both HPI-1 and NZ together can quickly change them into mature neurons that have dopaminergic activity. However, the current understanding of the underlying mechanisms involved in nerve guidance remains unstable and complex. Ongoing research in this field must continue to advance for a more in-depth understanding. This is crucial for the safe and highly effective clinical application of the knowledge gained to promote neural regeneration in different neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Data availability

The data analyzed in this study are available from the corresponding author on reasonable request.

Abbreviations

PD:

Parkinson's disease

DA:

dopamine

TH:

tyrosine hydroxylase

hNF:

human fibroblasts

HPI-1:

hedgehog pathway inhibitor 1

NZ:

neurodazine

References

  • Adelipour M, Saleth LR, Ghavami S, Alagarsamy KN, Dhingra S, Allameh A (2022) The role of autophagy in the metabolism and differentiation of stem cells. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1868(8):166412

  • Antonellis PJ, Engle SE, Brewer KM, Berbari NF (2021) The hedgehog signaling pathway is expressed in the adult mouse hypothalamus and modulated by fasting. eNeuro 8(5)

  • Bale AE, Yu K-p (2001) The hedgehog pathway and basal cell carcinomas. Hum Mol Genet 10(7):757–762

    Article  CAS  PubMed  Google Scholar 

  • Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227

    Article  CAS  PubMed  Google Scholar 

  • Connell JP, Kodali S, Cooke JP (2015) Therapeutic transdifferentiation: a novel approach for ischemic syndromes. Methodist DeBakey Cardiovasc J 11(3):176

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox AG, Hampton MB (2007) Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide. Carcinogenesis 28(10):2166–2171

    Article  CAS  PubMed  Google Scholar 

  • Csordás G, Gábor E, Honti V (2021) There and back again: the mechanisms of differentiation and transdifferentiation in Drosophila blood cells. Dev Biol 469:135–143

    Article  PubMed  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  • Driver JA, Logroscino G, Gaziano JM, Kurth T (2009) Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 72(5):432–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Edsjö A, Lavenius E, Nilsson H, Hoehner JC, Simonsson P, Culp LA, Martinsson T, Larsson C, Påhlman S (2003) Expression of trkB in human neuroblastoma in relation to MYCN expression and retinoic acid treatment. Lab investig 83(6):813–823

    Article  PubMed  Google Scholar 

  • Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Therapeutics 23(1):5–22

    Article  Google Scholar 

  • Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R (2020) Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 11:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594

    Article  CAS  PubMed  Google Scholar 

  • Halder D, Kim G-H, Shin I (2015) Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells. Mol BioSyst 11(10):2727–2737

    Article  CAS  PubMed  Google Scholar 

  • Hisahara S, Shimohama S (2011) Dopamine receptors and Parkinson’s disease. Int J Med Chem 2011:403039

    PubMed  PubMed Central  Google Scholar 

  • Hyman JM, Firestone AJ, Heine VM, Zhao Y, Ocasio CA, Han K, Sun M, Rack PG, Sinha S, Wu JJ (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci 106(33):14132–14137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz i Altaba A (2006) How the hedgehog outfoxed the crab. In: Ruiz i Altaba A (ed) Hedgehog-gli signaling in human disease. Springer US, Boston, MA, pp 1–22.

    Chapter  Google Scholar 

  • Kalra RS, Dhanjal JK, Das M, Singh B, Naithani R (2021) Cell transdifferentiation and reprogramming in disease modeling: insights into the neuronal and cardiac disease models and current translational strategies. Cells 10(10):2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung C-Y, Dawlaty MM, Tsai L-H (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell stem cell 9(5):413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-J (2011) Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1812(1):1-11

  • Kitazawa M, Wagner JR, Kirby ML, Anantharam V, Kanthasamy AG (2002) Oxidative stress and mitochondrial-mediated apoptosis in dopaminergic cells exposed to methylcyclopentadienyl manganese tricarbonyl. J Pharmacol Exp Therapeutics 302(1):26–35

    Article  CAS  Google Scholar 

  • Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136(8):2419–2431

    Article  PubMed  PubMed Central  Google Scholar 

  • Kou W, Luchtman D, Song C (2008) Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells. Eur J Nutr 47:104–113

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Chen Y, Gu R, Guo Q, Nie X (2023) Asiaticoside prevents oxidative stress and apoptosis in endothelial cells by activating ROS-dependent p53/Bcl-2/Caspase-3 signaling pathway. Curr Mol Med

  • Mai S, Muster B, Bereiter-Hahn J, Jendrach M (2012) Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 8(1):47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 6:1–35

    Article  Google Scholar 

  • Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagatsu T (2006) The catecholamine system in health and disease—relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad Ser B 82(10):388–415

    Article  CAS  Google Scholar 

  • Padilla-Godínez FJ, Ramos-Acevedo R, Martínez-Becerril HA, Bernal-Conde LD, Garrido-Figueroa JF, Hiriart M, Hernández-López A, Argüero-Sánchez R, Callea F, Guerra-Crespo M (2021) Protein misfolding and aggregation: the relatedness between Parkinson’s disease and hepatic endoplasmic reticulum storage disorders. Int J Mol Sci 22(22):12467

    Article  PubMed  PubMed Central  Google Scholar 

  • Parga J, Rodriguez-Pallares J, Blanco V, Guerra M, Labandeira-Garcia J (2008) Different effects of anti-sonic hedgehog antibodies and the hedgehog pathway inhibitor cyclopamine on generation of dopaminergic neurons from neurospheres of mesencephalic precursors. Dev Dyn 237(4):909–917

    Article  CAS  PubMed  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxidants Redox Signal 20(3):460–473

    Article  CAS  Google Scholar 

  • Peralta V, Cuesta MJ (2017) Motor abnormalities: from neurodevelopmental to neurodegenerative through “functional”(neuro) psychiatric disorders. Schizophrenia Bull 43(5):956–971

    Article  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108(25):10343–10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Zhao A, Fu X (2017) Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 74:3553–3575

    Article  CAS  PubMed  Google Scholar 

  • Rai SN, Singh P (2020) Advancement in the modelling and therapeutics of Parkinson’s disease. J Chem Neuroanatomy 104:101752

    Article  CAS  Google Scholar 

  • Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN (2023) WNT-β catenin signaling as a potential therapeutic target for neurodegenerative diseases: current status and future perspective. Diseases 11(3):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch W-D, Wang F, Radad K (2022) From the tyrosine hydroxylase hypothesis of Parkinson’s disease to modern strategies: a short historical overview. J Neural Transm 129(5–6):487–495

    Article  PubMed  Google Scholar 

  • Rujanapun N, Heebkaew N, Promjantuek W, Sotthibundhu A, Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Small molecules re-establish neural cell fate of human fibroblasts via autophagy activation. In Vitro Cell Dev Biol Anim 55:622–632

    Article  CAS  PubMed  Google Scholar 

  • Sdek P, Zhang Z, Cao J, Pan H, Chen W, Zheng J (2006) Alteration of cell-cycle regulatory proteins in human oral epithelial cells immortalized by HPV16 E6 and E7. Int J Oral Maxillofac Surg 35(7):653–657

    Article  CAS  PubMed  Google Scholar 

  • Sheikh A, Alvi AA, Aslam HM, Haseeb A (2012) Hedgehog pathway inhibitors–current status and future prospects. Infect Agents Cancer 7(1):1–2

    Article  Google Scholar 

  • Shen C-N, Burke ZD, Tosh D (2004) Transdifferentiation, metaplasia and tissue regeneration. Organogenesis 1(2):36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng T, Li C, Zhang X, Chi S, He N, Chen K, McCormick F, Gatalica Z, Xie J (2004) Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3(1):1–13

    Article  Google Scholar 

  • Sisakhtnezhad S, Matin MM (2012) Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 348:379–396

    Article  PubMed  Google Scholar 

  • Smith DK, Yang J, Liu M-L, Zhang C-L (2016) Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 7(5):955–969

    Article  CAS  Google Scholar 

  • Surmeier DJ (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 285(19):3657–3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabrez S, Jabir N, Shakil S, Greig N, Alam Q, Abuzenadah A, Damanhouri G, Kamal M (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson's disease. CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 11(4):395-409

  • Unnithan A, Das S, Nadipanna SP (2023) Expression of BAX and Bcl-2 gene in prostate carcinoma and its correlation with gleason score. Adv Hum Biol 13(4):344–349

    Article  Google Scholar 

  • Valencia M, Kim SR, Jang Y, Lee SH (2021) Neuronal autophagy: Characteristic features and roles in neuronal pathophysiology. Biomol Therapeutics 29(6):605

    Article  CAS  Google Scholar 

  • Wang X, Yang H, Wang X, Du Y (2016) Effect of siRNA-induced silencing of cellular prion protein on tyrosine hydroxylase expression in the substantia nigra of a rat model of Parkinson’s disease. Genet Mol Res 15(2):gmr7406

    Google Scholar 

  • Williams DR, Lee M-R, Song Y-A, Ko S-K, Kim G-H, Shin I (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J Am Chem Soc 129(30):9258–9259

    Article  CAS  PubMed  Google Scholar 

  • Williams DR, Kim G-H, Lee M-R, Shin I (2008) Fluorescent high-throughput screening of chemical inducers of neuronal differentiation in skeletal muscle cells. Nat Protocols 3(5):835–839

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y (2020) How to reprogram human fibroblasts to neurons. Cell Biosci 10:1–25

    Article  Google Scholar 

  • Yadav SK, Rai SN, Singh SP (2017) Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J Chem Neuroanatomy 80:1–10

    Article  CAS  Google Scholar 

  • Yang Y, Chen R, Wu X, Zhao Y, Fan Y, Xiao Z, Han J, Sun L, Wang X, Dai J (2019) Rapid and efficient conversion of human fibroblasts into functional neurons by small molecules. Stem Cell Rep 13(5):862–876

    Article  CAS  Google Scholar 

  • Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentelytė A, Žukauskaitė D, Jacerytė I, Borutinskaitė VV, Navakauskienė R (2021) Small molecule treatments improve differentiation potential of human amniotic fluid stem cells. Front Bioeng Biotechnol 9:623886

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao D-L, Zou L-B, Lin S, Shi J-G, Zhu H-B (2007) Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Neuropharmacology 53(6):724–732

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Li Y, Yan G, Bu Q, Lv L, Yang Y, Zhao J, Shao X, Deng Y, Zhu R (2011) Protective role of taurine against morphine-induced neurotoxicity in C6 cells via inhibition of oxidative stress. Neurotoxicity Res 20:334–342

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Suranaree University of Technology (SUT) Research and Development Fund, Thailand Science Research and Innovation (TSRI), National Science, Research and Innovation Fund (NSRF) (project code 90464), and the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research, and Innovation (PMU-B) (grant number B13F660133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinya Noisa.

Ethics declarations

Conflict of interest

There was no conflict of interest.

Research involving human participants and/or animals

This work did not involve human participants and/or animals.

Informed consent

Informed consent was not applicable for this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorraksa, N., Kaokaen, P., Kunhorm, P. et al. Rapid induction of dopaminergic neuron-like cells from human fibroblasts by autophagy activation with only 2-small molecules. 3 Biotech 14, 115 (2024). https://doi.org/10.1007/s13205-024-03957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-024-03957-0

Keywords

Navigation