Skip to main content

Advertisement

Log in

Molecular authentication, metabolite profiling and in silico–in vitro cytotoxicity screening of endophytic Penicillium ramusculum from Withania somnifera for breast cancer therapeutics

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, we isolated a potent endophytic fungus from the roots of Withania somnifera. The endophytic fungal strain was authenticated as Penicillium ramusculum SVWS3 based on morphological and molecular sequencing using four gene data and phylogenetic analyses. In vitro cytotoxicity studies unveiled the remarkable cytotoxic potential of the crude extract derived from P. ramusculum, exhibiting dose-dependent effects on MDA-MB-468 and MCF-7 cells. At a concentration of 100 µg/mL, the crude extract resulted in cell viability of 29.78% for MDA-MB-468 cells and 14.61% for MCF-7 cells. The IC50 values were calculated as 62.83 ± 0.93 µg/mL and 17.23 ± 1.43 µg/mL, respectively for MDA-MB-468 and MCF-7 cells. Caspase activation assay established the underlying mechanism of the crude extract depicting the activation of caspases 3 and 7, indicating the induction of apoptosis in MCF-7 cells. Chemotaxonomic profiling elucidated the ability of P. ramusculum to synthesize a diverse array of bioactive compounds, including Fasoracetam, Tryprostatin B, Odorinol, Thyronine, Brevianamide F, Proglumide, Perlolyrine, Tyrphostin B48, Baptifoline, etc. Molecular docking studies inferred that Baptifoline, Brevianamide F, Odorinol, Perlolyrine, Thyronine, Tryphostin B48, and Tryprostatin B were the lead compounds that could effectively interact with the five selected target receptors of breast cancer, further surpassing the positive controls analyzed. Pharmacokinetic profiling revealed that Baptifoline, Odorinol, and Thyronine depicted an excellent therapeutic profile of druggability. These findings collectively substantiate the anticancer activity of bioactive metabolites synthesized by P. ramusculum SVWS3. Hence, the endophytic P. ramusculum SVWS3 can be an authentic source for developing novel chemotherapeutic drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  • Abdul-Razek AS, El-Nagar ME, Allam A, Morsy OM, Othman SI (2020) Microbial natural products in drug discovery. Processes 8:470

    Article  Google Scholar 

  • Abu-Hashem AA, Al-Hussain SA, Zaki ME (2021) Design, synthesis and anticancer activity of new polycyclic: Imidazole, thiazine, oxathiine, pyrrolo-quinoxaline and thienotriazolopyrimidine derivatives. Molecules 26(7):2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acharya R, Chacko S, Bose P, Lapenna A, Pattanayak SP (2019) Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Alblewi FF, Okasha RM, Eskandrani AA, Afifi TH, Mohamed HM, Halawa AH, Fouda AM, Al-Dies AAM, Mora A, El-Agrody AM (2019) Design and synthesis of novel heterocyclic-based 4 H-benzo [h] chromene moieties: targeting antitumor caspase 3/7 activities and cell cycle analysis. Molecules 24(6):1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693. https://doi.org/10.1093/nar/25.22.4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7–8):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7:863–875

    Article  CAS  PubMed  Google Scholar 

  • Ashtekar N, Rajeshkumar KC, Yilmaz N, Visagie CM (2022) A new Penicillium section Citrina species and series from India. Mycol Prog 21(4):1–13

    Article  Google Scholar 

  • Ashwini S, Rajagopal K, Maheshwari S, Vanitha V, Arulmathi R, Tuwar A, Mohanasundaram S (2017) Cytotoxic evaluation of endophytic fungal extract obtained through static fermentation against Human Larynx Cancer Cell Line (HEp2). Int J Res Pharm Sci 8(3):439–441

    CAS  Google Scholar 

  • Aswani P, George TK, Jisha MS (2017) Characterization of bioactive metabolites of endophytic Fusarium solani isolated from Withania somnifera. J Biol Act Prod Nat 7(6):411–426

    CAS  Google Scholar 

  • Banerjee K, Padmavathi G, Bhattacherjee D, Saha S, Kunnumakkara AB, Bhabak KP (2018) Potent anti-proliferative activities of organochalcogenocyanates towards breast cancer. Org Biomol Chem 16(45):8769–8782

    Article  CAS  PubMed  Google Scholar 

  • Bernstein L (2002) Epidemiology of endocrine-related risk factors for breast cancer. J Mammary Gland Biol Neoplasia 7(1):3–15. https://doi.org/10.1023/A:1015714305420

    Article  PubMed  Google Scholar 

  • Bhasin S, Singh M, Singh D (2019) Review on bioactive metabolites of Withania somnifera. (L.) Dunal and its pharmacological significance. J Pharmacogn Phytotherapy 8(3):3906–3909

    Google Scholar 

  • Bungtongdee N, Sopalun K, Laosripaiboon W, Iamtham S (2019) The chemical composition, antifungal, antioxidant and antimutagenicity properties of bioactive compounds from fungal endophytes associated with Thai orchids. J Phytopathol 167(1):56–64

    Article  CAS  Google Scholar 

  • Calaf GM, Ponce-Cusi R, Carrión F (2018) Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep 40(4):2381–2388

    CAS  PubMed  Google Scholar 

  • Chen H, Yang J, Yang Y, Zhang J, Xu Y, Lu X (2021) The natural products and extracts: anti-triple-negative breast cancer in vitro. Chem Biodivers 18(7):e2001047

    Article  CAS  PubMed  Google Scholar 

  • Chu CN, Wu KC, Chung WS, Zheng LC, Juan TK et al (2019) Etomidate suppresses invasion and migration of human A549 lung adenocarcinoma cells. Anticancer Res 39(1):215–223

    Article  CAS  PubMed  Google Scholar 

  • Daniel AR, Hagan CR, Lange CA (2011) Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab 6(3):359–369. https://doi.org/10.1586/eem.11.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deepak KGK, Kumari S, Shailender G, Malla RR (2020) Marine natural compound cyclo (l-leucyl-l-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem-Biol Interact 315:108872

    Article  Google Scholar 

  • Ding Y, Chen S, Wang H, Li S, Ma C, Wang J, Cui L (2021) Identification of secondary metabolites in Flammulina velutipes by UPLC-Q-Exactive-Orbitrap MS. J Food Qual. https://doi.org/10.1155/2021/4103952

    Article  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31(5):617–627

    Article  CAS  PubMed  Google Scholar 

  • Gardner ED, Dimas DA, Finneran MC, Brown SM, Burgett AW, Singh S (2020) Indole C6 functionalization of Tryprostatin B using prenyltransferaseCdpNPT. Catalysts 10(11):1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George TK, Asok AK, Rebello S, Fathima PA (2015) Diversity of Bruguiera cylindrica and Rhizophora candelaria from ayiramthengu mangrove ecosystem. Ann Biol Res 6:55–63

    CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented format conversion of DNA and protein alignments. Nucleic Acids Res 38:W14–W18. https://doi.org/10.1093/nar/gkq321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guérin M, Gabillot M, Mathieu MC, Travagli JP, Spielmann M, Andrieu N, Riou G (1989) Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 43(2):201–208. https://doi.org/10.1002/ijc.2910430205

    Article  PubMed  Google Scholar 

  • Gupta NC, Arora S, Kundu A, Sharma P, Rao M, Bhattacharya R (2022) UPLC-Q-TOF-MS-based untargeted studies of the secondary metabolites secreted by Sclerotinia sclerotiorum under the axenic condition. Infection 15:17

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä M, Compant S, Campisano A, Döring M (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hare SH, Harvey AJ (2017) mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res 7(3):383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SB, Cho HS, Shin HD et al (2006) Novel Neosartorya species isolated from soil in Korea. Int J Syst Evol Microbiol 56:477–486

    Article  CAS  PubMed  Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken J, Kocsubé S, Visagie CM, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson RA, Frisvad JC (2020) Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 96(1):141–153

    Google Scholar 

  • Huisman M, Rahaman M, Asad S, Oehm S, Novin S, Rheingold AL, Hossain MM (2018) Total synthesis of tryprostatin B: synthesis and asymmetric phase-transfer-catalyzed reaction of prenylated gramine salt. Org Lett 21(1):134–137

    Article  PubMed  Google Scholar 

  • Innocenti G, Dall’Acqua S, Viola G, Loi MC (2006) Cytotoxic constituents from Anagyrisfoetida leaves. Fitoterapia 77(7–8):595–597

    Article  CAS  PubMed  Google Scholar 

  • Jha V, Devkar S, Gharat K, Kasbe S, Matharoo DK, Pendse S, Bhosale A, Bhargava A (2022) Screening of phytochemicals as potential inhibitors of breast cancer using structure based multitargeted molecular docking analysis. Phytomed plus 2(2):100227

    Article  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309

    Article  Google Scholar 

  • Kalló G, Kunkli B, Győri Z, Szilvássy Z, Csősz É, Tőzsér J (2020) Compounds with antiviral, anti-inflammatory and anticancer activity identified in wine from Hungary’s Tokaj Region via high resolution mass spectrometry and bioinformatics analyses. Int J Mol Sci 21(24):9547

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed Central  Google Scholar 

  • Khan R, Shahzad S, Choudhary MI, Khan SA, Ahmad A (2010) Communities of endophytic fungi in medicinal plant Withania somnifera. Pak J Bot 42:1281–1287

    Google Scholar 

  • Kim HS, Lim JM, Kim JY, Kim Y, Park S, Sohn J (2015) Panaxydol, a component of P anax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer 138(6):1432–1441

    Article  PubMed  Google Scholar 

  • Kornerup A, Wanscher JH (1967) Methuen handbook of colour, 2nd edn. Methuen, London

    Google Scholar 

  • Kumar S, Aharwal RP, Shukla H, Rajak RC, Sandhu SS (2014) Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharm Pharm Sci 3(2):1179–1197

    Google Scholar 

  • Lattmann E and Lattmann P (2018) Breaking into Merck’s CCK patents: the starting point of PNB vesper life science to design and develop cholecystokinin (CCK)-antagonists as targeted chemotherapeutics. Drug Des Int Prop Int J 1(2) DDIPIJ. MS. ID, 106

  • Levitzki A (2002) Tyrosine kinases as targets for cancer therapy. Eur J Cancer 38:S11–S18

    Article  PubMed  Google Scholar 

  • Li G, Jiang Y, Li Y, He T, Wang Y, Ji T, Zhai W, Zhao L, Zhou X (2019) Analysis and biological evaluation of Arisaema amuremse Maxim essential oil. Open Chem J 17(1):647–654

    Article  CAS  Google Scholar 

  • Li D, Zhang J, Yin L, Jin Z, Chen X, Meng X (2021) Etomidate inhibits cell proliferation and induces apoptosis in A549 non-small cell lung cancer cells via downregulating WWP2. Exp Ther Med 22(5):1–9

    Article  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

    Article  CAS  PubMed  Google Scholar 

  • Madki M, Manzoor A, Powar P, Patil K (2010) Isolation and biological activity of endophytic fungi from Withania somnifera. Int J Pharm Sci Res 2(3):848–858

    Google Scholar 

  • Majoumouo MS, Tincho MB, KouipouToghueo RM, Morris T, Hiss DC, Boyom FF, Mandal C (2020) Cytotoxicity potential of endophytic fungi extracts from Terminalia catappa against human cervical cancer cells. J Toxicol. https://doi.org/10.1155/2020/8871152

    Article  PubMed  PubMed Central  Google Scholar 

  • Manasa KL, Yadav SS, Srikanth D, Nagesh N, Alvala M (2020) Recent insights into β-carboline alkaloids with anticancer potential. Modern Approach Drug Design 3(1):1–24

    Google Scholar 

  • Mangrolia U, Osborne WJ (2020) Staphylococcus xylosus VITURAJ10: Pyrrolo [1, 2α] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl)(PPDHMP) producing, potential probiotic strain with antibacterial and anticancer activity. Microb Pathog 147:104259

    Article  CAS  PubMed  Google Scholar 

  • Mehetre GT, Vinodh JS, Burkul BB, Desai D, Santhakumari B, Dharne MS, Dastager SG (2019) Bioactivities and molecular networking-based elucidation of metabolites of potent actinobacterial strains isolated from the Unkeshwar geothermal springs in India. RSC Adv 9(17):9850–9859

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA. CA, San Diego Supercomput. Center, 1–8. https://doi.org/10.1109/GCE.2010.5676129

  • Moharram A, Zohri AN, Seddek N (2016) l-Asparaginase production by endophytic fungi isolated from WithaniaSomnifera in Egypt. Int J Multidiscip Res 2:30–40

    Google Scholar 

  • Montenegro I, Moreira J, Ramírez I, Dorta F, Sánchez E, Alfaro JF, Valenzuela M, Jara-Gutiérrez C, Muñoz O, Alvear M, Werner E (2020) Chemical composition, antioxidant and anticancer activities of Leptocarpharivularis dc flower extracts. Molecules 26(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  • Mvondo JGM, Matondo A, Mawete DT, Bambi SMN, Mbala BM, Lohohola PO (2021) In Silico ADME/T properties of quinine derivatives using SwissADME and pkCSM webservers. Int J Trop Dis Health 42(11):1–12

    Google Scholar 

  • Naik B, Goyal SK, Tripathi AD, Kumar V (2019) Exploring the diversity of endophytic fungi and screening for their pullulanase-producing capabilities. J Genet Eng Biotechnol 19(1):1–10

    Google Scholar 

  • Nayeem N, Contel M (2021) Exploring the potential of metallodrugs as chemotherapeutics for triple negative breast cancer. Chem Eur J 27(35):8891–8917

    Article  CAS  PubMed  Google Scholar 

  • Ndombera FT, Maiyoh GKK, Vivian CT (2019) Pharmacokinetic, physicochemical and medicinal properties of N-glycoside page 2 of 8 anticancer agent more potent than 2-deoxy-d-glucose in lung cancer cells. Cancer Sci Res 6(1):1–8

    Google Scholar 

  • Ogo A, Miyake S, Kubota H, Higashida M, Matsumoto H, Teramoto F, Hirai T (2017) Synergistic effect of eicosapentaenoic acid on anti-proliferative action of anticancer drugs in a cancer cell line model. Ann Nutr Metab 71(3–4):247–252

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. https://doi.org/10.1093/bioinformatics/12.4.357

    Article  CAS  PubMed  Google Scholar 

  • Pandey SS, Singh S, Pandey H et al (2018) Endophytes of Withania somnifera modulate in planta content and the site of Withanolide biosynthesis. Sci Rep 8(1):5450 (Nature Publishing Group)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Pitt JI (1980) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  • Purawarga Matada GS, Dhiwar PS, Abbas N, Singh E, Ghara A, Das A, Bhargava SV (2022) Molecular docking and molecular dynamic studies: screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer. J Biomol Struct Dyn 40(13):6183–6192

    Article  CAS  PubMed  Google Scholar 

  • Qanash H, Yahya R, Bakri MM, Bazaid AS, Qanash S, Shater AF, TM A (2022) Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyaliscaffra) fruit. Sci Rep 12(1):1–15

    Article  Google Scholar 

  • Rashmi M, Kushveer JS, Sarma VV (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1):798–1079

    Article  Google Scholar 

  • Rasool M, Varalakshmi P (2006) Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: an in vivo and in vitro study. Curr Vasc Pharmacol 44:406–410

    Article  CAS  Google Scholar 

  • Sánchez-Tafolla L, Padrón JM, Mendoza G, Luna-Rodríguez M, Fernández JJ, Norte M, Trigos Á (2019) Antiproliferative activity of biomass extract from Pseudomonas cedrina. Electron J Biotechnol 40:40–44

    Article  Google Scholar 

  • Sar P, Peter R, Rath B, Mohapatra AD, Mishra SK (2011) 3, 3′ 5 triiodo L thyronine induces apoptosis in human breast cancer MCF-7cells, repressing SMP30 expression through negative thyroid response elements. PLoS One 6(6):e20861

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Savi DC, Shaaban KA, Gos FMRW, Ponomareva LV, Thorson JS, Glienke C, Rohr J (2018) Phaeophleospora vochysiae Savi & Glienke sp. Nov. isolated from Vochysia divergens found in the Pantanal, Brazil, produces bioactive secondary metabolites. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Singh A, Singh DK, Kharwar RN, White JF, Gond SK (2021) Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorganisms 9(1):197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto-Cruz I, Rangel-Corona R, Valle-Mendiola A, Moreno-Morales X, Santiago-Pérez R, Weiss-Steider B, Cáceres-Cortés JR (2008) The tyrphostin B42 inhibits cell proliferation and HER-2 autophosphorylation in cervical carcinoma cell lines. Cancer Invest 26(2):136–144

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. https://doi.org/10.1080/10635150802429642

    Article  PubMed  Google Scholar 

  • Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4:57

    Article  Google Scholar 

  • Talib WH, Mahasheh AM (2010) Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm 78(1):33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangerina MM, Furtado LC, Leite VM, Bauermeister A, Velasco-Alzate K, Jimenez PC, Garrido LM, Padilla G, Lopes NP, Costa-Lotufo LV, Pena Ferreira MJ (2020) Metabolomic study of marine Streptomyces sp.: secondary metabolites and the production of potential anticancer compounds. PLoS One 15(12):e0244385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenguria RK, Khan FN (2015) Biodiversity of endophytic fungi in Withaniasomnifera leaves of Panchmarhi Biosphere Reserve, Madhya Pradesh. J Innov Pharm 2(2):222–228

    Google Scholar 

  • Terkmane S, Gali L, Bourrebaba L, Shoji K, Legembre P, Konstantia G, Ioanna C, Bedjou F (2018) Chemical composition, antioxidant, and anticancer effect of Rutachalepensis’s extracts against human leukemic cells. Phytothérapie 16(S1):S225–S236

    Article  Google Scholar 

  • Thom C (1930) The Penicillia. Williams & Wilkins, Baltimore, pp 1–644

    Google Scholar 

  • Toghueo RMK, Boyom FF (2020) Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 10(3):1–35

    Article  Google Scholar 

  • Udagawa S (1968) Three new species of Eupenicillium. Trans Mycol Soc Jpn 9:49–56

    Google Scholar 

  • Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN et al (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Vardhana J, Kathiravan G, Dhivya R (2017) Biodiversity of endophytic fungi and its seasonal recurrence from some plants. Res J Pharm Technol 2:490–496

    Article  Google Scholar 

  • Varghese S, Akshaya CS, Jisha MS (2021) Unravelling the bioprospects of mycoendophytes residing in Withaniasomnifera for productive pharmaceutical applications. Biocatal Agric Biotechnol 37:102172

    Article  CAS  Google Scholar 

  • Varghese S, Rajeshkumar KC, Gajbhiye V, Shaikh A, Jisha MS (2023) Phylogenetic characterization, chemotaxonomic profiling and in silico-in vitro cytotoxicity studies on endophytic Penicillium ramusculum strain SVWS3 of Withania somnifera from India. SSRN. https://doi.org/10.2139/ssrn.4392535

    Article  Google Scholar 

  • Vijayan S, Divya K, Jisha MS (2019) In vitro anti-cancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines. Appl Nanosci 10(3):715–728

    Article  ADS  Google Scholar 

  • Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Renard T, Rollan S, Taillandier P (2019) Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem 83:44–54

    Article  CAS  Google Scholar 

  • Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci 105(35):12815–12819

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Walter TM, Justinraj S, Swathi K, Nandhini VS, Devi SG, Sanjana G, Merish S (2017) Phytochemical analysis and Invitro Anticancer study of a Siddha formulation KKPN against Cervical Cancer. Siddha Pap 12(3):2–8

    Google Scholar 

  • Wang ZY, Yin L (2015) Estrogen receptor alpha-36 (ER-α36): a new player in human breast cancer. Mol Cell Endocrinol 15:1–34

    Google Scholar 

  • Welsh J (2013) Animal models for studying prevention and treatment of breast cancer. In: Academic Press. Animal models for the study of human disease, 997–1018

  • White TJ, Bruns T, Lee J, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

    Chapter  Google Scholar 

  • Xu W, Debeb BG, Lacerda L, Li J, Woodward WA (2011) Tetrandrine, a compound common in Chinese traditional medicine, preferentially kills breast cancer tumor initiating cells (TICs) in vitro. Cancers 3(2):2274–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaferanloo B, Pepper SA, Coulthard SA, Redfern CP, Palombo EA (2018) Metabolites of endophytic fungi from Australian native plants as potential anticancer agents. FEMS Microbiol Lett 365(9):fny078

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge DST-PURSE (no. SR/PURSE/Phase 2/26 (C)) and DST-FIST (no. SR/FST/ LSI-660/2016 (C)), National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, and Nanobioscience Group, Agharkar Research Institute, Pune for providing the necessary facilities. The authors would also like to thank Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University, Kerala for Waters Xevo G2 Q ToF MS analysis support. The first author would like to thank Mahatma Gandhi University for Junior Research Fellowship (Section order no. 4446/AC A6/2022/MGU).

Funding

The first author would like to thank Mahatma Gandhi University for Junior Research Fellowship (Section order no. 4446/AC A6/2022/MGU).

Author information

Authors and Affiliations

Authors

Contributions

SV: conceptualization, methodology, formal analysis, investigation, writing—original draft. MSJ: supervision, writing—review and editing. KCR: methodology, validation, formal analysis, visualization, writing—review and editing. VG: methodology, validation, formal analysis, visualization, writing—review and editing. NH: methodology, formal analysis, investigation. AS: methodology, formal analysis, investigation.

Corresponding author

Correspondence to M. S. Jisha.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, S., Jisha, M.S., Rajeshkumar, K.C. et al. Molecular authentication, metabolite profiling and in silico–in vitro cytotoxicity screening of endophytic Penicillium ramusculum from Withania somnifera for breast cancer therapeutics. 3 Biotech 14, 64 (2024). https://doi.org/10.1007/s13205-023-03906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03906-3

Keywords

Navigation