Skip to main content

Advertisement

Log in

In vitro study of the antioxidant, sun factor protection, antimicrobial, and antifungal activities with molecular docking of methanolic extracts from leaves and fruit of Phillyrea angustifolia L.

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the potential therapeutic effects of Phillyrea angustifolia L leaves and fruits from Algeria. The total phenolic and flavonoid contents, sun protection factor, antimicrobial, antifungal, and antioxidant activities such as DPPH, ABTS, FRAP, CUPRAC, and o-phenanthroline reduction were determined. The findings of the comparative analysis revealed that the leaves contained higher levels of total phenolic content (TPC) and flavonoid content (TFC) compared to the fruit, indicating their maximum antioxidant potential. TPC values for leaves ranged from 528.411 ± 9.94 to 816.352 ± 5.09 µg EAG/mg of dry extract, while for fruits, it ranged from 378.215 ± 5.26 to 579.392 ± 14.2 µg EAG/mg extract/ml. Similarly, TFC values for leaves varied from 65.833 ± 9.42 to 147.986 ± 5.59 µg EAG/mg of dry extract, and for fruits, it ranged from 45.486 ± 5.00 to 90.208 ± 6.77 µg EAG/mg extract/ml. Moreover, both leaves and fruit extracts showed significant growth inhibition against Staphylococcus aureus and Enterococcus faecalis, with the highest activity against Staphylococcus aureus, followed by Escherichia coli. The sun protection factor (SPF) values of both leaves and fruits extracts are close to the values of standard sunscreen VICHY. In addition, molecular docking studies identified promising compounds, including Demethyloleuropein, Luteolin-7-O-glucoside, Apigenin 7-Glucoside, Oleuropein, Pinoresinol, and Syringaresinol monoglucopyranoside of leaves from P. angustifolia L, these compounds are showing a better binding affinity than native ligands against Rhomboid protease GlpG from E. coli, the same thing about luteolin-7-O-glucoside and apigenin 7-glucoside exhibited similar binding free energy values to the target protein S. aureus sortase A. The study suggests that leaves and fruits of Phillyrea angustifolia L could be valuable sources for developing drugs against pathogenic oral yeasts, Gram-negative and Gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alara OR, Abdurahman NH, Ukaegbu CI (2021) Extraction of phenolic compounds: a review. Curr Res Food Sci 4:200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastassakis K (2022) The role of solar radiation in AGA/FPHL. Androgenetic Alopecia from A to Z. Springer, New York, pp 263–271

    Chapter  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52(26):7970–7981

    Article  CAS  PubMed  Google Scholar 

  • Asmerom D, Kalay TH, Tafere GG (2020) Antibacterial and antifungal activities of the leaf exudate of Aloe megalacantha Baker. Int J Microbiol

  • Ayoub L, Hassan F, Hamid S, Abdelhamid Z, Souad A (2019) Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation 15(3):226–232. https://doi.org/10.6026/97320630015226

    Article  PubMed  PubMed Central  Google Scholar 

  • Azizi S, Dalli M, Berrichi A, Gseyra N (2021) Quantification of secondary metabolites and the evaluation of the in vitro antioxidant activity of the Argan tree of eastern Morocco. Mater Today Proc 45:7314–7320. https://doi.org/10.1016/j.matpr.2020.12.1214

    Article  CAS  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79

    Article  PubMed  Google Scholar 

  • Ben-Amor I, Gargouri B, Attia H, Tlili K, Kallel I, Musarra-Pizzo M, Sciortino MT, Pennisi R (2021) In vitro Anti-Epstein Barr virus activity of Olea europaea L. leaf extracts. Plants. https://doi.org/10.3390/plants10112445

    Article  PubMed  PubMed Central  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200

    Article  ADS  CAS  Google Scholar 

  • Boufissiou A, Abdalla M, Sharaf M, Al-Resayes SI, Imededdine K, Alam M, Yagi S, Azam M, Yousfi M (2022) In-silico investigation of phenolic compounds from leaves of Phillyrea angustifolia L. as a potential inhibitor against the SARS-CoV-2 main protease (Mpro PDB ID: 5R83) using a virtual screening method. J Saudi Chem Soc 26(3):101473

    Article  CAS  Google Scholar 

  • Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6):1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheesman MJ, Ilanko A, Blonk B, Cock IE (2017) Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11(22):57–72. https://doi.org/10.4103/phrev.phrev_21_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coats JG, Maktabi B, Abou-Dahech MS, Baki G (2021) Blue light protection, Part I—effects of blue light on the skin. J Cosmet Dermatol 20(3):714–717

    Article  PubMed  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23(2):174–181. https://doi.org/10.1016/j.copbio.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  • Dahabra L, Broadberry G, Le Gresley A, Najlah M, Khoder M (2021) Sunscreens containing cyclodextrin inclusion complexes for enhanced efficiency: a strategy for skin cancer prevention. Molecules. https://doi.org/10.3390/molecules26061698

    Article  PubMed  PubMed Central  Google Scholar 

  • DellaGreca M, Mancino A, Previtera L, Zarrelli A, Zuppolini S (2011) Lignans from Phillyrea angustifolia L. Phytochem Lett 4(2):118–121

    Article  CAS  Google Scholar 

  • D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14(6):12222–12248. https://doi.org/10.3390/ijms140612222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61(8):3891–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Minero FJ, Bravo-Díaz L (2018) The use of plants in skin-care products, cosmetics and fragrances: past and present. Cosmetics 5(3):50

    Article  Google Scholar 

  • He J, Qiao W, An Q, Yang T, Luo Y (2020) Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 195:112268

    Article  CAS  PubMed  Google Scholar 

  • Hefied F, Ahmed ZB, Yousfi M (2023) Optimization of ultrasonic-assisted extraction of phenolic compounds and antioxidant activities from Pistacia atlantica Desf. galls using response surface methodology. J Appl Res Med Aromat Plants 32:100449

    CAS  Google Scholar 

  • Huang Y-L, Oppong MB, Guo Y, Wang L-Z, Fang S-M, Deng Y-R, Gao X-M (2019) The Oleaceae family: a source of secoiridoids with multiple biological activities

  • Ignat MV, Coldea TE, Salanță LC, Mudura E (2021) Plants of the spontaneous flora with beneficial action in the management of diabetes, hepatic disorders, and cardiovascular disease. Plants. https://doi.org/10.3390/plants10020216

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson DA, Piper IM, Vogel BA, Jackson SN, Svendsen JE, Kodama HM, Lee DE, Lindblom KM, McCarty J, Antos JM (2022) Structures of Streptococcus pyogenes class A sortase in complex with substrate and product mimics provide key details of target recognition. J Biol Chem 298(10)

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  • Lidén G (2011) The European commission tries to define nanomaterials. Ann Occup Hyg 55(1):1–5

    PubMed  Google Scholar 

  • Liu G, Beaton SE, Grieve AG, Evans R, Rogers M, Strisovsky K, Armstrong FA, Freeman M, Exley RM, Tang CM (2020) Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. EMBO J 39(10):e102922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Patel S, Sharma N, Soisson SM, Kishii R, Takei M, Fukuda Y, Lumb KJ, Singh SB (2014) Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem Biol 9(9):2023–2031

    Article  CAS  PubMed  Google Scholar 

  • Mansur JdS, Breder MNR, Mansur MCdA, Azulay RD (1986) Determinaçäo do fator de proteçäo solar por espectrofotometria. An Bras Dermatol 121–124

  • Maya-Cano DA, Arango-Varela S, Santa-Gonzalez GA (2021) Phenolic compounds of blueberries (Vaccinium spp) as a protective strategy against skin cell damage induced by ROS: a review of antioxidant potential and antiproliferative capacity. Heliyon 7(2):e06297. https://doi.org/10.1016/j.heliyon.2021.e06297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller L, Gnoyke S, Popken AM, Böhm V (2010) Antioxidant capacity and related parameters of different fruit formulations. LWT Food Sci Technol 43(6):992–999. https://doi.org/10.1016/j.lwt.2010.02.004

    Article  CAS  Google Scholar 

  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3(1):1–14

    Article  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44(6):307–315

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26(9–10):1231–1237

    Article  CAS  Google Scholar 

  • Romani A, Baldi A, Mulinacci N, Vincieri F, Tattini M (1996) Extraction and identification procedures of polyphenolic compounds and carbohydrates in Phillyrea (Phillyrea angustifolia L.) leaves. Chromatographia 42(9):571–577

    Article  CAS  Google Scholar 

  • Rosam K, Monk BC, Lackner M (2020) Sterol 14α-demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance in fungal pathogens. J Fungi 7(1):1

    Article  Google Scholar 

  • Sateriale D, Facchiano S, Colicchio R, Pagliuca C, Varricchio E, Paolucci M, Volpe M G, Salvatore P, Pagliarulo C (2020) In vitro synergy of polyphenolic extracts from honey, myrtle and pomegranate against oral pathogens, S. mutans and R. dentocariosa. Front Microbiol 1465

  • Sayre RM, Agin PP, LeVee GJ, Marlowe E (1979) A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol 29(3):559–566

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Minkis K, Swary JH, Alam M (2022) Photoaging. Cosmet Dermatol Prod Proc 16–25

  • Sharma RR, Deep A, Abdullah ST (2022) Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. J Ayurveda Integr Med 13(1):100500. https://doi.org/10.1016/j.jaim.2021.07.016

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    Article  CAS  Google Scholar 

  • Skok ZI, Barančoková M, Benek OE, Cruz CD, Tammela PI, Tomašič T, Zidar N, Mašič LP, Zega A, Stevenson CE (2020) Exploring the chemical space of benzothiazole-based DNA gyrase B inhibitors. ACS Med Chem Lett 11(12):2433–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stallings AF, Lupo MP (2009) Practical uses of botanicals in skin care. J Clin Aesthet Dermatol 2(1):36–40. https://pubmed.ncbi.nlm.nih.gov/20967187

  • Sudan R, Bhagat M, Gupta S, Singh J, Koul A (2014) Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). BioMed Res Int

  • Süntar I (2020) Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev 19(5):1199–1209. https://doi.org/10.1007/s11101-019-09629-9

    Article  CAS  Google Scholar 

  • Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E (2008) Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 76(4):899–905

    Article  PubMed  Google Scholar 

  • Topçu G, Ay M, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen A (2007) A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem 103(3):816–822

    Article  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (basel, Switzerland) 5(3):93. https://doi.org/10.3390/medicines5030093

    Article  CAS  PubMed  Google Scholar 

  • Wróblewska KB, Baby AR, Guaratini MTG, Moreno PRH (2019) In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species. Ind Crops Prod 130:208–215

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) of the Ministry of Higher Education and Scientific Research (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS) of Algeria for the experiments financial support of the doctoral Ahmed Boufissiou affiliated to the research laboratory « Laboratoire des Sciences Fondamentales (LSF) » of Laghouat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Boufissiou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statements

This research did not include studies involving animal or human participants, nor did it take place in private or protected areas. Furthermore, all authors have been personally and actively involved in the substantial work leading to this publication and accept public responsibility for its content. This paper truthfully and completely reflects the author's own research and analysis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 119 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufissiou, A., Kadi, I., Benamar-Aissa, B. et al. In vitro study of the antioxidant, sun factor protection, antimicrobial, and antifungal activities with molecular docking of methanolic extracts from leaves and fruit of Phillyrea angustifolia L.. 3 Biotech 14, 41 (2024). https://doi.org/10.1007/s13205-023-03877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03877-5

Keywords

Navigation