Skip to main content

Advertisement

Log in

High-throughput proteomic characterization of seminal plasma from bulls with contrasting semen quality

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Seminal plasma proteins are the major extrinsic factors that can modulate the sperm quality and functions. The present study was carried out to compare the proteomic profiles of seminal plasma from breeding bulls producing good and poor quality semen in an effort to understand the possible proteins associated with semen quality. A total of 910 and 715 proteins were detected in the seminal plasma of poor and good quality semen producing bulls, respectively. A total of 705 proteins were common to both the groups, in which 380 proteins were upregulated and 89 proteins were downregulated in the seminal plasma of poor quality semen, while 236 proteins were co-expressed. The proteins negatively influencing sperm functions such as CCL2, UQCRC2, and SAA1 were among the top ten upregulated proteins in the seminal plasma of poor quality semen. Proteins having a positive role in sperm functions (NGF, EEF1A2, COL1A2, IZUMO4, PRSS1, COL1A1, WFDC2) were among the top ten downregulated proteins in the seminal plasma of poor quality semen. The upregulation of oxidation–reduction process-related proteins, histone proteins (HIST3H2A, H2AFJ, H2AFZ, H2AFX, HIST2H2AB, H2AFV, HIST1H2AC, HIST2H2AC, LOC104975684, LOC524236, LOC614970, LOC529277), and ubiquinol–cytochrome-c reductase proteins (UQCRB, UQCRFS1, UQCRQ, UQCRC1, UQCRC2) indicate deranged oxidation–reduction equilibrium, chromatin condensation and spermatogenesis in poor quality semen producing bulls. The expression of proteins essential for motile cilium (CCDC114, CFAP206, TEKT4), chromatin integrity (PRM2), gamete fusion (IZUMO4, EQTN), hyperactivation, tyrosine phosphorylation, and capacitation [PI3K–Akt signalling pathway-related proteins (COL1A1, COL2A1, COL1A2, SPP1, PDGFA, NGF)] were down regulated in poor quality semen producing bulls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal A, Roychoudhury S, Bjugstad KB, Cho CL (2016) Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol 8:302–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam MM, Kumaresan A, Sharma VK, Tajmul M, Chhillar S, Chakravarty AK, Manimaran A, Mohanty TK, Srinivasan A, Yadav S (2014) Identification of putative fertility markers in seminal plasma of crossbred bulls through differential proteomics. Theriogenology 82:1254–1262

    Article  PubMed  Google Scholar 

  • Aslam MM, Sharma VK, Pandey S, Kumaresan A, Srinivasan A, Datta TK, Mohanty TK, Yadav S (2018) Identification of biomarker candidates for fertility in spermatozoa of crossbred bulls through comparative proteomics. Theriogenology 119:43–51

    Article  Google Scholar 

  • Aslam MK, Kumaresan A, Yadav S, Mohanty TK, Datta TK (2019) Comparative proteomic analysis of good-and poor-fertile buffalo bull spermatozoa for identification of fertility-associated proteins. Reprod Domest Anim 54:786–794

    Article  Google Scholar 

  • Basciani S, Mariani S, Arizzi M, Brama M, Ricci A, Betsholtz C, Bondjers C, Ricci G, Catizone A, Galdieri M, Spera G (2004) Expression of platelet-derived growth factor (PDGF) in the epididymis and analysis of the epididymal development in PDGF-A, PDGF-B, and PDGF receptor β deficient mice. Biol Reprod 70:168–177

    Article  CAS  PubMed  Google Scholar 

  • Beckers A, Adis C, Schuster-Gossler K, Tveriakhina L, Ott T, Fuhl F, Hegermann J, Boldt K, Serth K, Rachev E, Alten L (2020) The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development. Development 147:e188052

    Article  Google Scholar 

  • Chen SH, Li D, Xu C (2012) Downregulation of Col1a1 induces differentiation in mouse spermatogonia. Asian J Androl 14:842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DasGupta M, Kumaresan A, Saraf KK, Paul N, Sajeevkumar T, Karthikkeyan G, Prasad TK, Modi PK, Ramesha K, Manimaran A, Jeyakumar S (2021) Deciphering metabolomic alterations in seminal plasma of crossbred (Bos taurus X Bos indicus) bulls through comparative deep metabolomic analysis. Andrologia 54:e14253

    PubMed  Google Scholar 

  • du Plessis SS, Agarwal A, Mohanty G, Van der Linde M (2015) Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl 17:230

    Article  PubMed  Google Scholar 

  • Dutta S, Akey IV, Dingwall C, Hartman KL, Laue T, Nolte RT, Head JF, Akey CW (2001) The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol Cell 8:841–853

    Article  CAS  PubMed  Google Scholar 

  • Foote RH (2010) The history of artificial insemination: selected notes and notables. J Anim Sci 80:1–10

    Article  Google Scholar 

  • Han Y, Wu P, Wang Z, Zhang Z, Sun S, Liu J, Gong S, Gao P, Iwakuma T, Molina-Vila MA, Chen BPC (2019) Ubiquinol-cytochrome C reductase core protein II promotes tumorigenesis by facilitating p53 degradation. EBioMedicine 40:92–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Murphy CN, Spate L, Wax D, Zhong Z, Samuel M, Mathialagan N, Schatten H, Prather RS (2008) Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol Reprod Dev 75:291–298

    Article  CAS  PubMed  Google Scholar 

  • He Z, Feng L, Zhang X, Geng Y, Parodi DA, Suarez-Quian C, Dym M (2005) Expression of Col1a1, Col1a2 and procollagen I in germ cells of immature and adult mouse testis. Reproduction 130:333–341

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  PubMed  Google Scholar 

  • Inaba K, Mizuno K (2016) Sperm dysfunction and ciliopathy. Reprod Med Biol 15:77–94

    Article  CAS  PubMed  Google Scholar 

  • Ito C, Yamatoya K, Yoshida K, Fujimura L, Sugiyama H, Suganami A, Tamura Y, Hatano M, Miyado K, Toshimori K (2018) Deletion of Eqtn in mice reduces male fertility and sperm–egg adhesion. Reproduction 156:579–590

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Maresch CC, Petry SF, Paradowska-Dogan A, Bhushan S, Chang Y, Wrenzycki C, Schuppe HC, Houska P, Hartmann MF, Wudy SA (2020) Elevated CCL2 causes Leydig cell malfunction in metabolic syndrome. JCI Insight 5:e134882

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson GA, Burghardt RC, Bazer FW, Spencer TE (2003) Osteopontin: roles in implantation and placentation. Biol Reprod 69:1458–1471

    Article  CAS  PubMed  Google Scholar 

  • Kant K, Tomar AK, Sharma P, Kundu B, Singh S, Yadav S (2019) Human epididymis protein 4 quantification and interaction network analysis in seminal plasma. Protein Pept Lett 26:458–465

    Article  CAS  PubMed  Google Scholar 

  • Kasimanickam RK, Kasimanickam VR, Arangasamy A, Kastelic JP (2017) Associations of hypoosmotic swelling test, relative sperm volume shift, aquaporin7 mRNA abundance and bull fertility estimates. Theriogenology 89:162–168

    Article  CAS  PubMed  Google Scholar 

  • Khatun M, Kaur S, Kanchan CS (2013) Subfertility problems leading to disposal of breeding bulls. Asian-Australas J Anim Sci 26:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Kido T, Lau YFC (2008) The human Y-encoded testis-specific protein interacts functionally with eukaryotic translation elongation factor eEF1A, a putative oncoprotein. Int J Cancer 123:1573–1585

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kumar D, Singh I, Yadav PS (2012) Seminal plasma proteome: promising biomarkers for bull fertility. Agric Res 1:78–86

    Article  CAS  Google Scholar 

  • Lacroix B, Ryan J, Dumont J, Maddox PS, Maddox AS (2016) Identification of microtubule growth deceleration and its regulation by conserved and novel proteins. Mol Biol Cell 27:1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Sun Y, Yi K, Ma Y, Zhang W, Zhou X (2010) Detection of nerve growth factor (NGF) and its specific receptor (TrkA) in ejaculated bovine sperm, and the effects of NGF on sperm function. Theriogenology 74:1615–1622

    Article  CAS  PubMed  Google Scholar 

  • Lima FS, Stewart JL, Canisso IF (2020) Insights into nerve growth factor-β role in bovine reproduction-Review. Theriogenology 150:288–293

    Article  CAS  PubMed  Google Scholar 

  • Moura AA, Memili E (2018) Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim Reprod 13:191–199

    Article  Google Scholar 

  • Moura AA, Chapman DA, Koc H, Killian GJ (2006) Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. J Androl 27:534–541

    Article  CAS  PubMed  Google Scholar 

  • Moura AA, Chapman DA, Koc H, Killian GJ (2007) A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim Reprod Sci 98:169–188

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty C, de Lamirande E, Gagnon C (2006) Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med 40:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Park YJ, Kwon WS, Oh SA, Pang MG (2012) Fertility-related proteomic profiling bull spermatozoa separated by percoll. J Proteome Res 11:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Yang H, Xue S, Shi L, Yu Q, Kuang Y (2012) Secretome profile of mouse oocytes after activation using mass spectrum. J Assist Reprod Genet 29:765–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V (2012) The role of mitochondria in energy production for human sperm motility. Int J Androl 35:109–124

    Article  CAS  PubMed  Google Scholar 

  • Prakash MA, Kumaresan A, King JPES, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK (2021) Comparative transcriptomic analysis of spermatozoa from high-and low-fertile crossbred bulls: implications for fertility prediction. Front Cell Dev Biol 9:e647717

    Article  Google Scholar 

  • Rahman MS, Kwon WS, Yoon SJ, Park YJ, Ryu BY, Pang MG (2016) A novel approach to assessing bisphenol-A hazards using an in vitro model system. BMC Genom 17:1–12

    Article  Google Scholar 

  • Ramesha KP, Mol P, Kannegundla U, Thota LN, Gopalakrishnan L, Rana E, Azharuddin N, Mangalaparthi KK, Kumar M, Dey G, Patil A (2020) Deep proteome profiling of semen of indian indigenous Malnad Gidda (Bos indicus) cattle. J Proteome Res 19:3364–3376

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Martinez H (2006) Can we increase the estimative value of semen assessment? Reprod Dom Anim 41:2–10

    Article  Google Scholar 

  • Roncoletta M, Morani EDSC, Esper CR, Barnabe VH, Franceschini PH (2006) Fertility-associated proteins in Nelore bull sperm membranes. Anim Reprod Sci 91:77–87

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Lin YN, Agno JE, DeMayo FJ, Matzuk MM (2007) Absence of tektin 4 causes asthenozoospermia and subfertility in male mice. The FASEB J 21:1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Rodriguez A, Abad P, Arias-Alvarez M, Rebollar PG, Bautista JM, Lorenzo PL, García-García RM (2019) Recombinant rabbit beta nerve growth factor production and its biological effects on sperm and ovulation in rabbits. PLoS One 14:e0219780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraf KK, Kumaresan A, Dasgupta M, Karthikkeyan G, Prasad TSK, Modi PK, Ramesha K, Jeyakumar S, Manimaran A (2020) Metabolomic fingerprinting of bull spermatozoa for identification of fertility signature metabolites. Mol Reprod Dev 87:692–703

    Article  CAS  PubMed  Google Scholar 

  • Shukla KK, Kwon WS, Rahman MS, Park YJ, You YA, Pang MG (2013) Nutlin-3a decreases male fertility via UQCRC2. PLoS ONE 8:e76959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomar AK, Rajak SK, Aslam MK, Chhikara N, Ojha SK, Nayak S, Chhillar S, Kumaresan A, Yadav S (2021) Sub-fertility in crossbred bulls: Identification of proteomic alterations in spermatogenic cells using good throughput comparative proteomics approach. Theriogenology 169:65–75

    Article  CAS  PubMed  Google Scholar 

  • Tripathi UK, Aslam MK, Pandey S, Nayak S, Chhillar S, Srinivasan A, Mohanty TK, Kadam PH, Chauhan MS, Yadav S, Kumaresan A (2014) Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds. Front Cell Dev Biol 2:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner KA, Fishman EL, Asadullah M, Ott B, Dusza P, Shah TA, Sindhwani P, Nadiminty N, Molinari E, Patrizio P, Saltzman BS (2021) Fluorescence-based ratiometric analysis of sperm centrioles (frac) finds patient age and sperm morphology are associated with centriole quality. Front Cell Dev Biol 9:e658891

    Article  Google Scholar 

  • Ugur MR, Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E (2019) Advances in cryopreservation of bull sperm. Front Vet Sci 6:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Viana AGA, Martins AMA, Pontes AH, Fontes W, Castro MS, Ricart CAO, Sousa MV, Kaya A, Topper E, Memili E, Moura AA (2018) Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep 8:1–13

    Article  Google Scholar 

  • Vijetha BT, Rajak SK, Layek SS, Kumaresan A, Mohanty TK, Chakravarty AK, Gupta AK, Aslam MM, Manimaran A, Prasad S (2014) Breeding soundness evaluation in crossbred bulls: can testicular measurements be used as a tool to predict ejaculate quality. Indian J Anim Sci 84:177–180

    Google Scholar 

  • Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42:7290–7304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, Tissier S, Duquesnoy P, Copin B, Chantot S, Dastot F (2019) Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet 105:198–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PC, Noirel J, Ow SY, Fazeli A (2012) A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 77:738–765

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Yu X, Liu C, Wang L, Huang T, Lu G, Chen ZJ, Li W, Liu H (2021) Essential role of CFAP53 in sperm flagellum biogenesis. Front Cell Dev Biol 9:e676910

    Article  Google Scholar 

  • Ye RD, Sun L (2015) Emerging functions of serum amyloid A in inflammation. J Leukoc Biol 98:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SJ, Rahman MS, Kwon WS, Park YJ, Pang MG (2016) Addition of cryoprotectant significantly alters the epididymal sperm proteome. PLoS One 11:e0152690

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, ICAR–National Dairy Research Institute, India for providing necessary facilities for carrying out this research. The authors are thankful to the Director, Nandini Sperm Station, Karnataka Milk Federation, Karnataka for providing bull semen.

Funding

The present work was funded by Bill and Melinda Gates Foundation [Grant Number OPP1154401] project entitled “Molecular markers for improving reproduction in cattle and buffaloes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Kumaresan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elango, K., Karuthadurai, T., Kumaresan, A. et al. High-throughput proteomic characterization of seminal plasma from bulls with contrasting semen quality. 3 Biotech 13, 60 (2023). https://doi.org/10.1007/s13205-023-03474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03474-6

Keywords

Navigation