Skip to main content
Log in

Genome-wide identification and expression analysis of ammonium transporter 1 (AMT1) gene family in cassava (Manihot esculenta Crantz) and functional analysis of MeAMT1;1 in transgenic Arabidopsis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Nitrogen (N), a fundamental macronutrient for plant growth and development, is absorbed from the soil primarily in the form of ammonium (NH4+) and uptaken through a plant’s ammonium transporters (AMTs). While AMT proteins have been documented within diverse plant taxa, there has been no systematic analysis of their activity in cassava (Manihot esculenta Crantz), which is highly resistant to nitrogen deficiency. Here, we perform a comprehensive genome-wide analysis to identify and characterize the functional dynamics of cassava ammonium transporters 1 (MeAMT1). We identified a total of six AMT1 genes in the cassava genome (MeAMT1;1 to MeAMT1;6), the phylogenetic analysis of which fell into three distinct subgroups based on the conserved motifs and gene structures. Collinearity analysis showed that segmental duplication events played a key role in expansion of the MeAMT1 gene family. Synteny analysis indicated that two MeAMT1 genes were orthologous to Arabidopsis and rice. MeAMT1 promoters were additionally found to include various cis-acting elements related to light responsiveness, hormones, stress, and development processes. According to the RNA-seq data, the majority of MeAMT1 genes displayed specific patterns in the tested tissues. qRT-PCR revealed that all the tested MeAMT1 genes were up-regulated by low ammonium exposure. Furthermore, Arabidopis transformed with MeAMT1;1 gene grew well than wild-type plants in response to ammonium deficiency, suggesting that MeAMT1s play important role in response to low ammonium. Overall, our work lays the groundwork for new understanding of the AMT1 gene family in cassava and provides a basis for breeding efficient nitrogen use in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bailey TL, Bodén M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99:1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

    Article  CAS  PubMed  Google Scholar 

  • Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161(1):67–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y et al (2020a) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen YN, Wang HY et al (2020b) Feedback inhibitioin of AMT1 NH4+-transporters mediated by CIPK15 kinase. BMC Biol 18:196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  CAS  PubMed  Google Scholar 

  • Couturier J, Montanini B, Martin F et al (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174(1):137–150

    Article  CAS  PubMed  Google Scholar 

  • Filiz E, Akbudak MA (2020) Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lyycopersicum L.): bioinformatics, physiological and expression analyses under drought and salt stresses. Genomics 112:3773–3782

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A et al (1999) Three functional transporters for constitutive, diurnally regulated, and starvation induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassi AD, Lanave C, Saccone C (2008) Genome duplication and gene-family evolution: the case of three OXPHOS gene families. Gene 421:1–6

    Article  PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu M, Hu W, Xia Z et al (2016) Validation of reference genes for relative quantitative gene expression studies in cassava (Manihot esculenta Crantz) by using quantitative real-time PCR. Front Plant Sci 7:680

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486–487

    Article  PubMed  Google Scholar 

  • Kaiser BN (2002) Functional analysis of an Arabidopsis T-DNA ‘knockout’ of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiol 130:1263–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ, Baertsch R, Hinrichs A et al (2003) Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA 100:11484–11489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Tamura Y, Takai S et al (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW et al (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass AD (1996) Kinetics of NH4+ influx in spruce. Plant Physiol 110:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Silim SN, Okamoto M et al (2003) Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ 26:907–914

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauter FR, Ninnemann O, Bucher M et al (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci USA 93:8139–8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Dehais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SM, Li BZ, Shi WM (2012) Expression patterns of nine ammonium transporters in rice in response to N status. Pedosphere 22(6):860–869

    Article  Google Scholar 

  • Li C, Tang Z, Wei J et al (2016) The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genom 43:639–649

    Article  Google Scholar 

  • Li T, Liao K, Xu X et al (2017) Wheat ammonium transporter (AMT) gene family: diversity and possible role in host-pathogen interaction with stem rust. Front Plant Sci 8:1637

    Article  PubMed  PubMed Central  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Loqué D, Ludewig U, Yuan L et al (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate ammonia transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loqué D, Yuan L, Kojima S et al (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 48:522–534

    Article  PubMed  CAS  Google Scholar 

  • Ludewig U, Neuhäuser B, Dynowski M (2007) Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett 581:2301–2308

    Article  CAS  PubMed  Google Scholar 

  • Masumoto C, Miyazawa SI, Ohkawa H et al (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA 107:5226–5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo C, Wan S, Xia X et al (2018) Expression patterns and identified protein-protein interactions suggest that cassava CBL-CIPK signal networks function in response to abiotic stresses. Front Plant Sci 9:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuhäuser B, Dynowski M, Ludewig U (2009) Channel-like NH3 flux by ammonium transporter AtAMT2. FEBS Lett 583:2833–2838

    Article  PubMed  CAS  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high-affinity NH4+ transporter from plants. EMBO J 13:3464–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou W, Mao X, Huang C et al (2018) Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculenta Crantz). Front Physiol 9:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Bio Biochem 33:651–657

    Article  CAS  Google Scholar 

  • Pantoja O (2012) High affinity ammonium transporters: molecular mechanism of action. Front Plant Sci 3:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson JN, Finnemann J, Schjoerring JK (2002) Regulation of the high-affinity ammonium transporter (BnAMT1;2) in the leaves of Brassica napus by nitrogen status. Plant Mol Biol 49:483–490

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, El-kereamy A, Gidda S et al (2014) AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot 65(4):965–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvemini F, Marini A, Riccio A et al (2001) Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene 270:237–243

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Dong B, de Bruxelles GL et al (2001) Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil 231:151–160

    Article  CAS  Google Scholar 

  • Sohlenkamp C, Shelden M, Howitt S et al (2000) Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett 467:273–278

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S et al (2003) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 44:1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Straub T, Ludewig U, Neuhauser B (2017) The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. Plant Cell 29:409–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y et al (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Di D, Li G et al (2020) Transcriptiome analysis of rice (Oryza sativa L.) in response to ammonium resupply reveals the involvement of phytohormone signaling and the transcription factor OsJAZ9 in reprogramming of nitrogen uptake and metabolism. J Plant Physiol 246:153137

    Article  PubMed  CAS  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • von Wirén N, Gazzarrini S, Gojon A et al (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261

    Article  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ et al (1993) Ammonium uptake by rice roots (II. Kinetics of 13NH4+ influx across the plasmalemma). Plant Physiol 103:1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang H, DeBarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LE, Miller AJ (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Phys 52:659–688

    Article  CAS  Google Scholar 

  • Wood CC, Poree F, Dreyer I et al (2006) Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1;1. FEBS Lett 580:3931–3936

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012a) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63:153–182

    Article  CAS  Google Scholar 

  • Xu G, Guo C, Shan H et al (2012b) Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA 109:1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Duan X, Yang J et al (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161:1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan W, Beeckman T, Xu G (2017a) Plant nitrogen nutrition: sensing and signaling. Curr Opin Plant Biol 39:57–65

    Article  CAS  PubMed  Google Scholar 

  • Xuan YH, Duan FY, Je BI et al (2017b) Related to ABI3/VP1-like 1 (RAVL1) regulated brassinosteroid-mediated activation of AMT1;2 in rice (Oryza sativa). J Exp Bot 68(3):727–737

    CAS  PubMed  Google Scholar 

  • Yang S, Yuan D, Zhang Y et al (2021) BZR1 regulateds brassinosteroid-mediated activation of AMT1;2 in rice. Front Plant Sci 12:665883

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Loqué D, Kojima S et al (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19:2636–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by High-level Talents Project of Basic and Applied Basic Research Program of Hainan Province (in Natural Science) (No. 2019RC046), the National Key Research and Development Program of China (No. 2018YFD1000500 and 2018YFE0207203-2); Hainan Provincial Natural Science Foundation (318QN189, 319MS009); the Education Department of Hainan Province (Hys2020-242, Hnky2021-19), and the Startup funding from Hainan University (No. KYQD(ZR)1845).

Author information

Authors and Affiliations

Authors

Contributions

YZ and XJ conceived and designed the experiments. YX, YL, TZ and YW performed the experiments. YX, TZ, XJ and YZ contributed reagents/materials/analysis tools. YX, YZ and XJ wrote and revised the paper. All authors read and approved the work reported.

Corresponding authors

Correspondence to Xingyu Jiang or Yang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 458 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Liu, Y., Zhang, T. et al. Genome-wide identification and expression analysis of ammonium transporter 1 (AMT1) gene family in cassava (Manihot esculenta Crantz) and functional analysis of MeAMT1;1 in transgenic Arabidopsis. 3 Biotech 12, 4 (2022). https://doi.org/10.1007/s13205-021-03070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03070-6

Keywords

Navigation