Skip to main content
Log in

RNAi activation with homologous and heterologous sequences that induce resistance against the begomovirus Pepper golden mosaic virus (PepGMV)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study compared the transcriptional changes in Nicotiana benthamiana plants treated with homologous sequences derived from Pepper golden mosaic virus (PepGMV) and heterologous sequences that derived from another begomovirus, Tomato chino La Paz virus (ToChLPV) prior to infection by PepGMV. The results of microarray analyses identified upregulated genes associated with RNAi such as DCL2, DCL4, AGO3, AGO7, AGO10, NRPD2B (Pol IV), DRB3, CMT3, RDR6. The components that participate in different RNAi pathways were identified, including methylation induced by both constructs, as well as the code of these genes in Arabidopsis thaliana and its counterpart in N. benthamiana through different genome assembly. The expression of these genes was validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR), where DCL3, DCL4, AGO1-1, AGO2, RDR6 and PPR1 showed increased expression during plant protection with the heterologous construct compared to those protected with the homologous construct. The results of this study confirmed the activation of the gene silencing mechanism at the transcriptional level with both constructs and established the possibility of their use as a protection system for both homologous and heterologous sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP (2006) Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol 151:2349–2363. https://doi.org/10.1007/s00705-006-0819-7

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576. https://doi.org/10.1111/j.1364-3703.2010.00621.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577. https://doi.org/10.1016/j.cell.2006.09.032

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J et al (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant-Microbe Interact 25:1523–1530

    Article  CAS  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol cell Biol 16:727–741

    Article  CAS  Google Scholar 

  • Cárdenas-Conejo Y, Arguello-Astorga G, Poghosyan A et al (2010) First report of Tomato yellow leaf curl virus co-infecting Pepper with Tomato chino La Paz virus in Baja California Sur. Mexico Plant Dis 94:1266. https://doi.org/10.1094/PDIS-06-10-0444

    Article  PubMed  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R et al (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611. https://doi.org/10.1007/s11103-004-0147-9

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lin C, Tsai W et al (2016) Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains. J Plant Biochem Biotechnol 25:199–207. https://doi.org/10.1007/s13562-015-0325-7

    Article  CAS  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832

    Article  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  Google Scholar 

  • De Barro PJ, Liu S-S, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632

    Article  CAS  Google Scholar 

  • Eamens A, Vaistij FE, Jones L (2008) NRPD1a and NRPD1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. Plant J 55:596–606. https://doi.org/10.1111/j.1365-313X.2008.03525.x

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S et al (2012) STRING v9. 1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  Google Scholar 

  • García-Arenal F, Zerbini FM (2019) Life on the edge: geminiviruses at the interface between crops and wild plant hosts. Annu Rev Virol 6(1):411–433

    Article  Google Scholar 

  • Gharsallah-Chouchane S, Gorsane F, Nakhla MK et al (2008) Evaluation of two gene-silencing constructs for resistance to tomato yellow leaf curl viruses in Nicotiana benthamiana plants. Acta Virol 52:143–149

    CAS  PubMed  Google Scholar 

  • Ghoshal B, Sanfaçon H (2014) Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires argonaute 1. Virology 456–457:188–197. https://doi.org/10.1016/j.virol.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Pinzon I, Yelina NE, Schwach F et al (2007) SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J 50:140–148

    Article  CAS  Google Scholar 

  • Herr AJ, Baulcombe DC (2004) RNA silencing pathways in plants. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 363–370

  • Ichimura K, Shinozaki K, Tena G et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • Klepikova AV, Kasianov AS, Gerasimov ES et al (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J 88:1058–1070

    Article  CAS  Google Scholar 

  • Kontra L, Csorba T, Tavazza M et al (2016) Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PLoS Pathog 12:e1005935

    Article  Google Scholar 

  • Kourelis J, Kaschani F, Grosse-Holz FM et al (2018) Re-annotated Nicotiana benthamiana gene models for enhanced proteomics and reverse genetics. bioRxiv 373506

  • Li F, Wang A (2018) RNA decay is an antiviral defense in plants that is counteracted by viral RNA silencing suppressors. PLoS Pathog 14:e1007228

    Article  Google Scholar 

  • Li F, Wang Y, Zhou X (2017) SGS3 cooperates with RDR6 in triggering geminivirus-induced gene silencing and in suppressing geminivirus infection in Nicotiana benthamiana. Viruses 9:247

    Article  Google Scholar 

  • Lin CY, Ku HM, Tsai WS et al (2011) Resistance to a DNA and a RNA virus in transgenic plants by using a single chimeric transgene construct. Transgenic Res 20:261–270. https://doi.org/10.1007/s11248-010-9412-7

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Shi L, Han C et al (2012) Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7:e46451

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394

    Article  CAS  Google Scholar 

  • Medina-Hernández D, Rivera-Bustamante R, Tenllado F, Holguín-Peña RJ (2013) Effects and effectiveness of two RNAi constructs for resistance to Pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses 5:2931–2945

    Article  Google Scholar 

  • Méndez-Lozano J, Torres-Pacheco I, Fauquet CM, Rivera-Bustamante RF (2003) Interactions between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 93:270–277

    Article  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  Google Scholar 

  • Morales-Aguilar JJ, Rodríguez-Negrete EA, Camacho-Beltrán E et al (2019) Identification of Tomato yellow leaf curl virus, Pepper huasteco yellow vein virus and Pepper golden mosaic virus associated with pepper diseases in northern Mexico. Can J Plant Pathol 41:544–550

    Article  CAS  Google Scholar 

  • Movahedi A, Zhang J, Sun W et al (2018) Plant small RNAs: definition, classification and response against stresses. Biologia (Bratisl) 73:285–294. https://doi.org/10.2478/s11756-018-0034-5

    Article  CAS  Google Scholar 

  • Mubin M, Hussain M, Briddon RW, Mansoor S (2011) Selection of target sequences as well as sequence identity determine the outcome of RNAi approach for resistance against cotton leaf curl geminivirus complex. Virol J 8:122

    Article  CAS  Google Scholar 

  • Nakasugi K, Crowhurst RN, Bally J et al (2013) De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 8:e59534. https://doi.org/10.1371/journal.pone.0059534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248. https://doi.org/10.1146/annurev-phyto-072910-095235

    Article  CAS  PubMed  Google Scholar 

  • Odokonyero D, Mendoza MR, Moffett P, Scholthof HB (2017) Tobacco rattle virus (TRV)-mediated silencing of Nicotiana benthamiana Argonautes (NbAGOs) reveals new antiviral candidates and dominant effects of TRV-NbAGO1. Phytopathology 107:977–987. https://doi.org/10.1094/PHYTO-02-17-0049-R

    Article  CAS  PubMed  Google Scholar 

  • Paudel DB, Ghoshal B, Jossey S et al (2018) Expression and antiviral function of Argonaute 2 in Nicotiana benthamiana plants infected with two isolates of Tomato ringspot virus with varying degrees of virulence. Virology 524:127–139. https://doi.org/10.1016/j.virol.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    Article  CAS  Google Scholar 

  • Qin C, Li B, Fan Y et al (2017) Roles of dicer-like proteins 2 and 4 in intra- and intercellular antiviral silencing. Plant Physiol 174:1067. https://doi.org/10.1104/pp.17.00475

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu F, Ye X, Hou G et al (2005) RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. J Virol 79:15209. https://doi.org/10.1128/JVI.79.24.15209-15217.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasool G, Yousaf S, Amin I et al (2016) Transient expression of synthetic coat protein gene of Cotton leaf curl Burewala virus in tobacco (Nicotiana benthamiana). J Agric Res 54:21–34

    Google Scholar 

  • Robinson KE, Worrall EA, Mitter N (2014) Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. J plant Biochem Biotechnol 23:231–237

    Article  CAS  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784

    Article  CAS  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H et al (2016) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha O, Farouk I, Abdallah A, Abdallah NA (2016) Use of posttranscription gene silencing in squash to induce resistance against the Egyptian isolate of the Squash leaf curl virus. Int J Genomics 2016:1–9

    Article  Google Scholar 

  • Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96. https://doi.org/10.1016/j.virusres.2004.01.019

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Hohn T (2013) Biogenesis and biological activity of secondary siRNAs in plants. Scientifica (Cairo) 2013:783253

    PubMed Central  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459. https://doi.org/10.1016/S0168-9525(01)02367-8

    Article  CAS  PubMed  Google Scholar 

  • Wang X-B, Jovel J, Udomporn P et al (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638. https://doi.org/10.1105/tpc.110.082305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WQ, Fan HY, Jiang N et al (2014) Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol J 11:118

    Article  Google Scholar 

  • Wu C, Li X, Guo S, Wong S-M (2016) Analyses of RNA-Seq and sRNA-Seq data reveal a complex network of anti-viral defense in TCV-infected Arabidopsis thaliana. Sci Rep 6:36007

    Article  CAS  Google Scholar 

  • Xie M, Ren G, Costa-Nunes P et al (2012) A subgroup of SGS3-like proteins act redundantly in RNA-directed DNA methylation. Nucleic Acids Res 40:4422–4431

    Article  CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Article  CAS  Google Scholar 

  • Yousaf S, Rasool G, Amin I et al (2015) Evaluation of the resistance against begomoviruses imparted by the single-stranded DNA binding protein VirE2. Pak J Agri Sci 52:887–893

    Google Scholar 

  • Zhang X, Zhu Y, Liu X et al (2015) Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science 80(348):120–123

    Article  Google Scholar 

  • Zhang X, Lai T, Zhang P et al (2019) Mini review: revisiting mobile RNA silencing in plants. Plant Sci 278:113–117. https://doi.org/10.1016/j.plantsci.2018.10.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financed by the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) through projects SEP2007-84777 and SEP2015-253828 “Analysis of the regulatory function of sRNAs in a gene silencing system as a mechanism of protection against mixed begomoviral infections” granted to R.J. Holguín-Peña. The authors are grateful to Gerardo Rafael Hernández García for his support in figure editing, the Laboratory of Phytopathology, CIBNOR, México, and Diana Fischer for editorial services.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Diana Medina Hernández, Mayela Vargas Salinas, Guadalupe Fabiola Arcos Ortega and Irasema Elizabeth Luis Villaseñor. The first draft of the manuscript was written by Diana Medina Hernández, Mayela Vargas Salinas, Guadalupe Fabiola Arcos Ortega and all authors commented on previous versions of the manuscript. Review and editing: Mayela Vargas Salinas and Guadalupe Fabiola Arcos Ortega. Funding acquisition: Ramón Jaime Holguín Peña. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramón Jaime Holguín-Peña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Salinas, M., Medina-Hernández, D., Arcos-Ortega, G.F. et al. RNAi activation with homologous and heterologous sequences that induce resistance against the begomovirus Pepper golden mosaic virus (PepGMV). 3 Biotech 11, 114 (2021). https://doi.org/10.1007/s13205-021-02653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02653-7

Keywords

Navigation