Skip to main content

Advertisement

Log in

Whole-genome resequencing analysis of Pengxian Yellow Chicken to identify genome-wide SNPs and signatures of selection

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Chinese indigenous chickens have experienced strong selective pressure in genes or genomic regions controlling critical agricultural traits. To exploit the genetic features that may be useful in agriculture and are caused by artificial selection, we performed whole-genome sequencing of six Pengxian Yellow Chickens and downloaded the sequence data of five Red Jungle fowls from the NCBI. Through selective sweep analysis, we detected several regions with strong selection signals, containing 497 protein-coding genes. These genes were involved in developmental processes, metabolic processes, the response to external stimuli and other biological processes including digestion (ABCG5, ABCG8 and ADRB1), muscle development and growth (SMPD3, NELL1, and BICC1) and reduced immune function (CD86 and MTA3). Interestingly, we identified several genes with extremely strong selection signals associated with the loss of visual capability of domestic chickens relative to their wild ancestors. Amongst them, we propose that CTNND2 is involved in the evolutionary changes of domestic chickens toward reduced visual ability through the diopter system. VAT1 was also likely to contribute to these processes through its regulation of mitochondrial fusion. In summary, these data illustrate the patterns of genetic changes in Pengxian yellow chickens during domestication and provide valuable genetic resources that facilitate the utilization of chickens in agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12(12):1805–1814

    Article  CAS  Google Scholar 

  • Anderson JO, Warnick RE (1970) Studies of the need for supplemental biotin in chick rations. Poult Sci 49(2):569–578

    Article  CAS  Google Scholar 

  • Aslam ML, Bastiaansen JW, Elferink MG, Megens HJ, Crooijmans RP, Le AB, Fleischer RC, Tassell CPV, Sonstegard TS, Schroeder SG (2012) Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genom 13(1):391

    Article  CAS  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18(R2):169–176

    Article  Google Scholar 

  • Chen EY, Tan CM, Yan K, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14(1):128

    Article  Google Scholar 

  • Crouse JA, Lopes VS, Sanagustin JT, Keady BT, Williams DS, Pazour GJ (2014) Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton 71(5):302–310

    Article  CAS  Google Scholar 

  • Dionne IJ, Garant MJ, Nolan AA, Pollin TI, Lewis DG, Shuldiner AR, Poehlman ET (2002) Association between obesity and a polymorphism in the β1-adrenoceptor gene (Gly389Arg ADRB1) in Caucasian women. Int J Obes Relat Metab Disord 26(5):633–639

    Article  CAS  Google Scholar 

  • Duparc RH, Boutemmine D, Champagne MP, Tetreault N, Bernier G (2006) Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice. Dev Biol 300:647–655

    Article  CAS  Google Scholar 

  • Eura Y, Ishihara N, Oka T, Mihara K (2006) Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci 119(Pt 23):4913–4925

    Article  CAS  Google Scholar 

  • Fujita N, Jaye DL, Geigerman C, Akyildiz A, Mooney MR, Boss JM, Wade PA (2004) MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation: cell. Cell 119(1):75–86

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T (2009b) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068

    Article  CAS  Google Scholar 

  • James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS (2015) NELL-1 in the treatment of osteoporotic bone loss. Nat Commun 6(Suppl 6):7362

    Article  CAS  Google Scholar 

  • Krock BL, Perkins BD (2008) The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle–kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121(11):1907–1915

    Article  CAS  Google Scholar 

  • Lauber JK, Mcginnis J (1966) Eye lesions in domestic fowl reared under continuous light. Vision Res 6(12):619–626

    Article  CAS  Google Scholar 

  • Li YJ, Fan Q, Yu M, Han SY, Sim XL, Ong RTH, Wong TY, Vithana EN (2011) Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology 118(2):368–375

    Article  Google Scholar 

  • Li D, Che T, Chen B, Tian S, Zhou X, Zhang G, Li M, Gaur U, Li Y, Luo M (2017) Genomic data for 78 chickens from 14 populations. Gigascience 6:1–5

    PubMed  PubMed Central  Google Scholar 

  • Lisney TJ, Ekesten B, Tauson R, Håstad O, Odeen A (2012) Using electroretinograms to assess flicker fusion frequency in domestic hens Gallus gallus domesticus. Vision Res 62(3):125–133

    Article  Google Scholar 

  • Martin B, Schneider R, Janetzky S, Waibler Z, Pandur P, Kühl M, Behrens J, Kvd Mark, Starzinski-Powitz A, Wixler V (2012) The LIM-only protein FHL2 interacts with β-catenin and promotes differentiation of mouse myoblasts. J Cell Biol 159(1):113

    Article  Google Scholar 

  • Mesner LD, Ray B, Hsu YH, Manichaikul A, Lum E, Bryda EC, Rich SS, Rosen CJ, Criqui MH, Allison M (2014) Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. J Clin Invest 124(6):2736–2749

    Article  CAS  Google Scholar 

  • Mitchell MA, Smith MW (1991) The effects of genetic selection for increased growth rate on mucosal and muscle weights in the different regions of the small intestine of the domestic fowl (Gallus domesticus). Comp Biochem Phys A 99(1–2):251–258

    Article  CAS  Google Scholar 

  • Most PJVD, Jong BD, Parmentier HK, Verhulst S (2011) Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct Ecol 25(1):74–80

    Article  Google Scholar 

  • Omar S, Qureshi YZ, Nakamura Kyoko, Attridge Kesley, Manzotti Claire, Schmidt Emily M, Baker Jennifer, Jeffery Louisa E, Kaur Satdip, Briggs Zoe, Hou Tie Z, Futter Clare E, Anderson Graham, Walker Lucy SK, Sansom David M (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell extrinsic function of CTLA-4. Science 332(6029):600–603

    Article  Google Scholar 

  • Osorio D, Vorobyev M, Jones CD (1999) Colour vision of domestic chicks. J Exp Biol 202(21):2951–2959

    CAS  PubMed  Google Scholar 

  • Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW (1999) The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 250:452–464

    Article  CAS  Google Scholar 

  • Parisi MA, Doherty D, Eckert ML, Shaw DW, Ozyurek H, Aysun S, Giray O, Al SA, Al SS, Dohayan N, Bakhsh E, Indridason OS, Dobyns WB, Bennett CL, Chance PF, Glass IA (2006) AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 43(4):334–339

    Article  CAS  Google Scholar 

  • Roth LSV, Lind O (2013) The impact of domestication on the chicken optical apparatus. PLoS One 8(6):e65509

    Article  CAS  Google Scholar 

  • Rubin CJ, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, Lin J, Ingman M, Sharpe T, Sojeong K (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464(7288):587

    Article  CAS  Google Scholar 

  • Stoffel W, Jenke B, Blöck B, Zumbansen M, Koebke J (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 102(12):4554–4559

    Article  CAS  Google Scholar 

  • Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242(4877):405–411

    Article  CAS  Google Scholar 

  • Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, Tu XL, Dong Y, Zhu CL, Wang L, Zhang YP (2015) Genomic analyses reveal potential independent adaptation to high altitude in Tibetan Chickens. Mol Biol Evol 32(7):1880–1889

    Article  CAS  Google Scholar 

  • Wang MS, Zhang R, Su LY, Li Y, Peng MS, Liu HQ, Zeng L, Irwin DM, Du JL, Wu DD, Yao YG, Zhang YP (2016a) Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res 26(5):556

    Article  CAS  Google Scholar 

  • Wang MS, Zhang R, Su LY, Li Y, Peng MS, Liu HQ, Zeng L, Irwin DM, Du JL, Yao YG (2016b) Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res 26(5):556

    Article  CAS  Google Scholar 

  • Wu CX (2001) The utilization of inheritance resource and local fowls breeders in the poultry producing. China Poult 23(23):3–4

    Google Scholar 

  • Yu L, Lihawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH (2002) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110(5):671–680

    Article  CAS  Google Scholar 

  • Zhang ZR, Liu YP, Yao YG, Jiang XS, Du HR, Zhu Q (2009) Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3) gene with carcass traits in chickens. BMC Genet 10(1):10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Sichuan Science and Technology Program (2016NYZ0050), and Technology Planning Project of Chengdu (2015-NY01-00036-NC).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HY and QZ; methodology, HY and YW; software, HY and DL; formal analysis, HY and DL; resources, QZ; writing—original draft preparation, HY; writing—review and editing, HY and QZ; supervision, QZ; project administration, YW; funding acquisition, QZ and HY.

Corresponding author

Correspondence to Qing Zhu.

Ethics declarations

Conflict of interest

All the authors report no conflicts of interest in this work.

Ethics approval

All experimental operations were approved by the Animal Ethics Committee of Sichuan Agricultural University (approval number: 20171410401). Relevant guidelines and regulations were followed for all methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Li, D., Wang, Y. et al. Whole-genome resequencing analysis of Pengxian Yellow Chicken to identify genome-wide SNPs and signatures of selection. 3 Biotech 9, 383 (2019). https://doi.org/10.1007/s13205-019-1902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1902-6

Keywords

Navigation