Skip to main content
Log in

An experimental analysis of CTAB surfactant on thermo-physical properties and stability of MWCNT/water nanofluids

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

To get the high thermal efficiency of heat transferring medium in various fluid heating and cooling industries, novel fluids are evolved constantly. Nanofluids with good thermo-physical properties and long term stability are preferred by researchers. In our work, multi-walled carbon nanotubes (MWCNT) as nanoparticles are taken into consideration due to its very high thermal conductivity (TC). For enhancing its stability in dispersion with water, a suitable surfactant such as cetyl trimethyl ammonium bromide (CTAB) is used. In this paper, a critical and in-depth evaluation of thermo-physical properties and stability of MWCNT/water nanofluids has been performed. In continuation to this, the effect of CTAB surfactant on different weight concentrations (0.01, 0.05, 0.1 and 0.3 wt%) of nanofluid samples at different temperatures (30–80 °C) was investigated. TC of nanofluids is enhanced with increase in temperature as well as nanofluid concentration. Maximum enhancement of 33.42% in TC is observed for 0.3 wt% at 80 °C compared to distilled water values. Viscosity of nanofluids is enhanced with nanofluid concentration and decreased with increase in temperature. Maximum enhancement of 64.32% in viscosity is observed for 0.3 wt% at 30 °C compared to distilled water. Highest decrement of 61.83% in viscosity is obtained for 0.3 wt% at 80 °C compared to viscosity at room temperature (at 30 °C). Experimentally measured values for TC and viscosity are also compared with values produced from standard theoretical models. Two correlations are proposed for TC and viscosity with having least margin of deviation (MOD) and maximum regression coefficient (R2) that proves accuracy. The effect of CTAB surfactant on both TC and viscosity are also assessed. The whole nature of nanofluid was totally changed from hydrophobic to hydrophilic, from less solubility in polar solvent (e.g., water) to high solubility and from low stability to very high stability after adding CTAB. Stability of surfacted nanofluid is far more increased beyond 6 months (except 0.01 wt%) compared to non-surfacted nanofluids which is 17 days only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

CMC:

Critical micelle concentration

CNTs:

Carbon nano-tubes

CTAB:

Cetyl trimethyl ammonium bromide

DDC:

Distearyl dimethylammonium chloride

EDAX:

Energy-dispersive analysis of X-rays

FT-IR:

Fourier transform infrared spectroscopy

FESEM:

Field emission scanning electron microscopy

EG:

Ethylene glycol

GA:

Gum arabic

MOD:

Margin of deviation

MWCNT:

Multi walled carbon nano-tubes

SDBS:

Sodium dodecyl benzene sulphonate

SDC:

Sodium deoxy cholate

SDS:

Sodium dodecyl sulphate

SLS:

Sodium lauryl sulfonate

PVP:

Poly vinyl pyrrolidone

TC:

Thermal conductivity

TMAH:

Tetra methyl ammonium hydroxide

TSC:

Tri sodium citrate dehydrate

UV–Vis:

Ultraviolet–visible

ZP:

Zeta-potential

References

  • Aghahadi MH, Niknejadi M, Toghraie D (2019) An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J Mol Struct 1197:497–507

    Article  CAS  Google Scholar 

  • Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR (2015) An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube. Int Commun Heat Mass Transf 63:62–72

    Article  CAS  Google Scholar 

  • Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR, Fakoor-Pakdaman M (2016) An experimental investigation on rheological properties and heat transfer performance of MWCNT-water nanofluid flow inside vertical tubes. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.06.076

    Article  Google Scholar 

  • Akhilesh M, Santarao K, Babu MVS (2018) Thermal conductivity of CNT-wated nanofluids: a review. Mech Mech Eng 22(1):207–220

    Article  Google Scholar 

  • Ali N, Teixeira JA, Addali A (2018) A review on nanofluids: fabrication, stability, and thermophysical properties. J Nanomater. https://doi.org/10.1155/2018/6978130

    Article  Google Scholar 

  • Almanassra IW, Manasrah AD, Al-Mubaiyedh UA, Al-Ansari T, Malaibari ZO, Atieh MA (2020) An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study. J Mol Liq 304:111025

    Article  CAS  Google Scholar 

  • Al-Rashed AA, Kolsi L, Oztop HF, Aydi A, Malekshah EH, Abu-Hamdeh N, Borjini MN (2018) 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E 99:294–303

    Article  CAS  Google Scholar 

  • Arora N, Gupta M (2019) A review on synthesis and heat transfer applications of carbon nanotubes nanofluid. J Composition Theory 12(7):633

    Google Scholar 

  • Arora N, Gupta M (2020) An updated review on application of nanofluids in flat tubes radiators for improving cooling performance. Renew Sustain Energy Rev 134:110242

    Article  CAS  Google Scholar 

  • Arora N, Gupta M (2021) Thermo-hydraulic performance of nanofluids in enhanced tubes -a review. Heat Mass Transf 57:377–404

    Article  CAS  Google Scholar 

  • Arzani HK, Amiri A, Kazi SN, Chewa BT, Badarudin A (2016) Experimental investigation of thermophysical properties and heat transfer rate of covalently functionalized MWCNT in an annular heat exchanger. Int Commun Heat Mass Transf 75:67–77

    Article  CAS  Google Scholar 

  • Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664

    Article  CAS  Google Scholar 

  • Babu JR, Kumar KK, Rao SS (2017) State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev 77:551–565

    Article  CAS  Google Scholar 

  • Bakhtiari R, Kamkari B, Afrand M, Abdollahi A (2021) Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technol 385:466–477

    Article  CAS  Google Scholar 

  • Baudot C, Tan CM, Kong JC (2010) FTIR spectroscopy as a tool for nano-material characterization. Infrared Phys Technol 53(6):434–438

    Article  CAS  Google Scholar 

  • Chen HJ, Wen D (2011) Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Res Lett 6(1):198

    Article  CAS  Google Scholar 

  • Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab

    Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  CAS  Google Scholar 

  • Choi TJ, Jang SP, Kedzierski MA (2018) Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int J Heat Mass Transf 122:483–490

    Article  CAS  Google Scholar 

  • Chougule SS, Sahu SK (2014) Thermal performance of automobile radiator using carbon nanotube-water nanofluid—experimental study. J Therm Sci Eng Appl 6(4):041009–041011

    Article  CAS  Google Scholar 

  • Das PK (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq 240:420–446

    Article  CAS  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574

    Article  CAS  Google Scholar 

  • Derakhshan MM, Akhavan-Behabadi MA (2015) Mixed convection of MWCNT-heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci 99:1–8

    Article  CAS  Google Scholar 

  • Derakhshan MM, Akhavan-Behabadi MA (2016) Mixed convection of MWCNT/heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci 99:1–8

    Article  CAS  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  CAS  Google Scholar 

  • Ebrahimi M, Farhadi M, Sedighi K, Akbarzade S (2014) Experimental investigation of force convection heat transfer in a car radiator filled with SiO2-water nanofluid. Int J Eng 27:333–340

    Article  CAS  Google Scholar 

  • Einstein A (1906) A new determination of molecular dimensions. Ann Phys 19:289–306

    Article  CAS  Google Scholar 

  • Elsaid AM (2019) Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. Int Commun Heat Mass Transf 108:104263

    Article  CAS  Google Scholar 

  • Eman AM, Dawya M, Abouelsayedb A, Elsabbaghc IA, Elfassc MM (2016) Synthesis and characterization of multi-walled carbon nanotubes decorated ZnO nanocomposite. Egypt J Chem 59:1061–1068

    Article  Google Scholar 

  • Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon (NY) 34(2):279–281

    Article  CAS  Google Scholar 

  • Gangadevi R, Vinayagam BK, Senthilraja S (2018) Effects of sonication time and temperature on thermal conductivity of CuO/water and Al2O3/water nanofluids with and without surfactant. Mater Today Proc 5(2):9004–9011

    Article  CAS  Google Scholar 

  • Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52:5090–5101

    Article  CAS  Google Scholar 

  • Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17–18):4051–4068

    Article  CAS  Google Scholar 

  • Gupta M, Arora N, Kumar R, Kumar S, Dilbaghi N (2014) A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids. Int J Mech Mater Eng 9(1):11

    Article  Google Scholar 

  • Gupta M, Kumar R, Arora N, Kumar S, Dilbagi N (2015) Experimental investigation of the convective heat transfer characteristics of TiO2/distilled water nanofluids under constant heat flux boundary condition. J Braz Soc Mech Sci Eng 37(4):1347–1356

    Article  CAS  Google Scholar 

  • Gupta M, Kumar R, Arora N, Kumar S, Dilbagi N (2016) Forced convective heat transfer of MWCNT/water nanofluid under constant heat flux: an experimental investigation. Arab J Sci Eng 41(2):599–609

    Article  CAS  Google Scholar 

  • Gupta M, Singh V, Kumar R, Said Z (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 74:638–670

    Article  CAS  Google Scholar 

  • Gupta M, Singh V, Said Z (2020) Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: an experimental investigation and development of new correlations for thermophysical and heat transfer properties. Sustain Energy Technol Assess 39:100720

    Google Scholar 

  • Hamid KA, Azmi WH, Mamat R, Usri NA, Najafi G (2015) Effect of temperature on heat transfer coefficient of titanium dioxide in ethylene glycol-based nanofluid. J Mech Eng Sci 8:1367–1375

    Article  CAS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1(3):187–191

    Article  CAS  Google Scholar 

  • He W, Toghraie D, Lotfipour A, Pourfattah F, Karimipour A, Afrand M (2020) Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int Commun Heat Mass Transf 110:104440

    Article  CAS  Google Scholar 

  • Hosseinian A, Isfahani AM, Shirani E (2018) Experimental investigation of surface vibration effects on increasing the stability and heat transfer coeffcient of MWCNTs-water nanofluid in a flexible double pipe heat exchanger. Exp Thermal Fluid Sci 90:275–285

    Article  CAS  Google Scholar 

  • Huminic G, Huminic A (2018) The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. Int J Heat Mass Transf 119:813–827

    Article  CAS  Google Scholar 

  • Huminic G, Huminic A (2019) The influence of hybrid nanofluids on the performances of elliptical tube: recent research and numerical study. Int J Heat Mass Transf 129:132–143

    Article  CAS  Google Scholar 

  • Hussien AA, Abdullah MZ, Yusop NM, Al-Nimr MA, Atieh MA, Mehrali M (2017) Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube. Int J Heat Mass Transf 115:1121–1131

    Article  CAS  Google Scholar 

  • Ibrahim KS (2013) Carbon nanotubes–properties and applications: a review. Carbon Lett 14(3):131–144

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature (london) 354:56

    Article  CAS  Google Scholar 

  • Jadar R, Shashishekar KS (2017) f-MWCNT nanomaterial integrated automobile radiator. Mater Today Proc 4:11028–11033

    Article  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    Article  CAS  Google Scholar 

  • Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94

    Article  CAS  Google Scholar 

  • Jin C, Wu Q, Yang G, Zhang H, Zhong Y (2021) Investigation on hybrid nanofluids based on carbon nanotubes filled with metal nanoparticles: stability, thermal conductivity, and viscosity. Powder Technol 389:1–10

    Article  CAS  Google Scholar 

  • Kamali R, Binesh AR (2010) Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids. Int Commun Heat Mass Transfer 37:1153–1157

    Article  CAS  Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanics of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 307:313–317

    Google Scholar 

  • Khan AI, Arasu AV (2019) A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Therm Sci Eng Progress 11:334–364

    Article  Google Scholar 

  • Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D (2019) Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim 136(3):1333–1345

    Article  CAS  Google Scholar 

  • Kolsi L, Oztop HF, Ghachem K, Almeshaal MA, Mohammed HA, Babazadeh H, Abu-Hamdeh N (2019) Numerical study of periodic magnetic field effect on 3D natural convection of MWCNT-water/nanofluid with consideration of aggregation. Processes 7(12):957

    Article  CAS  Google Scholar 

  • Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf 32(9):1111–1118

    Article  CAS  Google Scholar 

  • Kumar DD, Arasu AV (2018) A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sustain Energy Rev 81:1669–1689

    Article  Google Scholar 

  • Kumar PG, Kumaresan V, Velraj R (2017) Stability, viscosity, thermal conductivity, and electrical conductivity enhancement of multi-walled carbon nanotube nanofluid using gum Arabic. Fullerenes Nanotubes Carbon Nanostruct 25(4):230–240

    Article  CAS  Google Scholar 

  • Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602

    Article  CAS  Google Scholar 

  • Li X, Zhu D, Wang X (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463

    Article  CAS  Google Scholar 

  • Li Z, Barnoon P, Toghraie D, Dehkordi RB, Afrand M (2019) Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: two phase approach. Adv Powder Technol 30(11):2666–2685

    Article  CAS  Google Scholar 

  • Li X, Chen W, Zou C (2020) The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: a surface modification approach. Powder Technol 361:957–967

    Article  CAS  Google Scholar 

  • Li Y, Shahsavar A, Talebizadehsardari P (2021) Thermal conductivity of ethylene glycol-based nanofluid containing SiO2 nanoadditives: experimental data and modeling through curve fitting. J Therm Anal Calorim 146(3):1101–1109

    Article  CAS  Google Scholar 

  • Mahbubul IM, Saidur R, Amalina MA, Elcioglu EB, Okutucu-Ozyurt T (2015) Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrason Sonochem 26:361–369

    Article  CAS  Google Scholar 

  • Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA (2017) Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem 37:360–367

    Article  CAS  Google Scholar 

  • Maxwell JC (1881) A treatise on electricity and magnetism, vol 1. Clarendon press

    Google Scholar 

  • Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M (2016) Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Experimental Heat Transfer 29(1):124–138. https://doi.org/10.1080/08916152.2014.973974

    Article  CAS  Google Scholar 

  • Mukherjee S, Paria S (2013) Preparation and stability of nanofluids-a review. IOSR J Mech Civil Eng 9(2):63–69

    Article  Google Scholar 

  • Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5–6):1529–1535

    Article  CAS  Google Scholar 

  • Pakdaman MF, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Thermal Fluid Sci 40:103–111

    Article  CAS  Google Scholar 

  • Pang C, Jung J-Y, Kang YT (2014) Aggregation based model for thermal conductivity enhancement of nanofluids. Int J Heat Mass Transf 72:392–399

    Article  CAS  Google Scholar 

  • Peixoto RT, Paulinelli VMF, Sander HH, Lanza MD, Cury LA, Poletto LTA (2007) Light transmission through porcelain. Dent Mater 23(11):1363–1368

    Article  CAS  Google Scholar 

  • Phuoc TX, Massoudi M, Chen RH (2011) Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci 50(1):12–18

    Article  CAS  Google Scholar 

  • Pinto RV, Fiorelli FAS (2016) Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng 108:720–739

    Article  CAS  Google Scholar 

  • Poongavanam GK, Panchabikesan K, Murugesan R, Duraisamy S, Ramalingam V (2019) Experimental investigation on heat transfer and pressure drop of MWCNT-Solar glycol based nanofluids in shot peened double pipe heat exchanger. Powder Technol 345:815–824

    Article  CAS  Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901

    Article  CAS  Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2006a) Brownian-motion-based convective conductive model for the effective thermal conductivity of nanofluids. J Heat Transfer 128(6):588–595

    Article  CAS  Google Scholar 

  • Prasher R, Phelan PE, Bhattacharya P (2006b) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534

    Article  CAS  Google Scholar 

  • Rashmi W, Ismail AF, Sopyan I, Jameel AT, Yusof F, Khalid M, Mubarak NM (2011) Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci 6(6):567–579

    Article  CAS  Google Scholar 

  • Ren Y, Xie H, Cai A (2005) Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 38(21):3958

    Article  CAS  Google Scholar 

  • Rostami S, Toghraie D, Shabani B, Sina N, Barnoon P (2021) Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim 143(2):1097–1105

    Article  CAS  Google Scholar 

  • Ruhani B, Barnoon P, Toghraie D (2019) Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Physica A 525:616–627

    Article  CAS  Google Scholar 

  • Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N (2014) An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett 9(1):1–16

    Article  CAS  Google Scholar 

  • Sandhu H, Gangacharyulu D (2017) An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Part Sci Technol 35(5):547–554

    Article  CAS  Google Scholar 

  • Selimefendigil F, Öztop HF (2019) Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf 129:265–277

    Article  CAS  Google Scholar 

  • Sezer N, Atieh MA, Koç M (2019) A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol 344:404–431

    Article  CAS  Google Scholar 

  • Shanbedi M, Heris SZ, Amiri A, Hosseinipour E, Eshghi H, Kazi SN (2015) Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manag 105:1366–1376

    Article  CAS  Google Scholar 

  • RK Shukla, VK Dhir (2005) Numerical study of the effective thermal conductivity of nanofluids, Proceedings ASME summer heat transfer conference San Francisco CA 1–5

  • Singh V, Gupta M (2016) Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: a review. Energy Convers Manag 123:290–307

    Article  Google Scholar 

  • Singh K, Sharma SK, Gupta SM (2020) Preparation of long duration stable CNT nanofluid using SDS. Integr Ferroelectr 204(1):11–22

    Article  CAS  Google Scholar 

  • Smith JG Jr, Connell JW, Watson KA, Danehy PM (2005) Optical and thermo-optical properties of space durable polymer/carbon nanotube films: experimental results and empirical equations. Polymer 46(7):2276–2284

    Article  CAS  Google Scholar 

  • Soltani F, Toghraie D, Karimipour A (2020) Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions. Powder Technol 371:37–44

    Article  CAS  Google Scholar 

  • Syam Sundar L, Singh MK, Sousa ACM (2014) Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf 52:73–83

    Article  CAS  Google Scholar 

  • Terekhov VI, Kalinina SV, Lemanov VV (2010) The mechanism of heat transfer in nanofluids: state of the art (review). Thermophys Aeromech. https://doi.org/10.1134/S0869864310010014

    Article  Google Scholar 

  • Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S (2017) Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Thermal Fluid Sci 89:295–303

    Article  CAS  Google Scholar 

  • Tiwari AK, Pandya NS, Said Z, Öztop HF, Abu-Hamdeh N (2021) 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: an experimental assessment. Colloids Surf A Physicochem Eng Asp 610:125918

    Article  CAS  Google Scholar 

  • Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M (2019) Designing an artificial neural network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys A Stat Mech Appl 534:122142

    Article  CAS  Google Scholar 

  • Wang J, Li G, Li T, Zeng M, Sundén B (2021) Effect of various surfactants on stability and thermophysical properties of nanofluids. J Therm Anal Calorim 143(6):4057–4070

    Article  CAS  Google Scholar 

  • Wong KV, Castillo MJ (2010) Heat transfer mechanisms and clustering in nanofluids. Adv Mech Eng 2:795478

    Article  CAS  Google Scholar 

  • Wu Z, Wang L, Sunden B, Wadso L (2016) Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Appl Therm Eng 96:364–371

    Article  CAS  Google Scholar 

  • Xian HW, Sidik NAC, Saidur R (2020) Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transf 110:104389

    Article  CAS  Google Scholar 

  • Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94:4967–4971

    Article  CAS  Google Scholar 

  • Xing M, Yu J, Wang R (2016) Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int J Therm Sci 104:404–411

    Article  CAS  Google Scholar 

  • Yadav P, Gupta SM, Sharma SK (2021) A review on stabilization of carbon nanotube nanofluid. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10999-6

    Article  Google Scholar 

  • Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms and applications. J Nanomater 2012:1–17

    Google Scholar 

  • Yu CJ, Richter AG, Datta A, Durbin MK, Dutta P (1999) Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys Rev Lett 82(11):2326

    Article  CAS  Google Scholar 

  • Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ (2012) Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys 408:11–16

    Article  CAS  Google Scholar 

  • Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650

    Article  CAS  Google Scholar 

  • Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9(1):131–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeti Arora.

Ethics declarations

Thermal conductivity and viscosity were measured with caliberated instruments and examined values compared with theoretical values.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Gupta, M. An experimental analysis of CTAB surfactant on thermo-physical properties and stability of MWCNT/water nanofluids. Appl Nanosci 12, 1941–1966 (2022). https://doi.org/10.1007/s13204-022-02458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02458-x

Keywords

Navigation