Skip to main content
Log in

Synthesis of graphitic carbon nitride nanosheets-layered imprinted polymer system as a nanointerface for detection of chloramphenicol

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) nanomaterials can be layered together to design hybrid materials. Their exceptional properties can be harnessed to fabricate advanced sensors. In the present study, a novel mass-sensitive sensor has been developed by preparing a hybrid of 2D graphitic carbon nitride nanosheets and molecularly imprinted polymer. 2D graphitic carbon nitride nanosheets (g-C3N4) were synthesized by a microwave-assisted method. Further, a molecularly imprinted polymer (MIP) was designed by free radical polymerization using chloramphenicol as the template analyte. A layered assembly of g-C3N4 and MIP was prepared to modify quartz crystal microbalance (QCM) devices to generate nanointerface. The g-C3N4 nanosheets possessed zeta potential of − 39 mV which indicated strong electrostatic interaction with gold electrodes of QCM, leading to stable adhesion of MIP layers. Morphological investigations by scanning electron microscopy revealed 2D lamellar structures of g-C3N4, with wrinkles and irregular folds. Atomic force microscopy showed the prepared sheet layers were ~ 30 nm thick. The resultant nanointerface was used as a mass-sensitive transducer to detect chloramphenicol. The decrease of the basic frequency of QCM devices upon inclusion of the target analyte generated the sensor signals. A linear relationship of frequency responses was obtained, yielding a detection limit down to 177 µM. Moreover, the prepared sensor gives 98–90% highly specific detection of chloramphenicol compared to its interferents and structural analogs (thiamphenicol and clindamycin). It suggested sucessful application of the prepared hybrid based on layering of 2D materials. The sensor presented here harbors the benefits of excellent sensitivity as well as selective binding. These attributes make 2D hybrid materials a favorable sensor platform for the detection of important environmental molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adanyi N, V’aradi M, Kim N, Szendr’o I (2006) Development of new immunosensors for determination of contaminants in food. Curr Appl Phys 6:279–286

    Article  Google Scholar 

  • Akter Mou S, Islam R, Shoeb M, Nahar N (2021) Determination of chloramphenicol in meat samples using liquid chromatography–tandem mass spectrometry. Food Sci Nutr. https://doi.org/10.1002/fsn3.2530

    Article  Google Scholar 

  • Andaluz-Scher L, Medow NB (2020) Chloramphenicol eye drops: an old dog in a new house. Ophthalmology 127:1289–1291

    Article  Google Scholar 

  • Bai F, Xu L, Zhai X, Chen X, Yang W (2020) Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv Energ Mater 10:1902107

    Article  CAS  Google Scholar 

  • Chen Y et al (2020) Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts toward the oxygen reduction reaction. Nano Lett 20:6807–6814

    Article  CAS  Google Scholar 

  • Cheng L, Wang X, Gong F, Liu T, Liu Z (2020) 2D nanomaterials for cancer theranostic applications. Adv Mater 32:1902333

    Article  CAS  Google Scholar 

  • Cruz AG, Haq I, Cowen T, Masi SD, Trivedi S, Alanazi K, Piletska E, Mujahid A, Piletsky SA (2020) Design and fabrication of a smart sensor using in silico epitope mapping and electro-responsive imprinted polymer nanoparticles for determination of insulin levels in human plasma. Biosen Bioelectron. https://doi.org/10.1016/j.bios.2020.112536

    Article  Google Scholar 

  • Dong Y, Wang Q, Wu H, Chen Y, Lu CH, Chi Y, Yang HH (2016) Graphitic carbon nitride materials: sensing, imaging and therapy. Small 12:5376–5393

    Article  CAS  Google Scholar 

  • Du XJ, Zhou XN, Li P, Sheng W, Ducancel FDR, Wang S (2016) Development of an immunoassay for chloramphenicol based on the preparation of a specific single-chain variable fragment antibody. J Agric Food Chem 64:2971–2979

    Article  CAS  Google Scholar 

  • Gaddam SK, Pothu R, Boddula R (2020) Graphitic carbon nitride (g-C3N4) reinforced polymer nanocomposite systems—a review. Polym Composit 41:430–442

    Article  CAS  Google Scholar 

  • Hasan TH, Al-Harmoosh RA (2020) Mechanisms of antibiotics resistance in bacteria. Sys Rev Pharm 11:817–823

    CAS  Google Scholar 

  • Ismael M (2020) A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J Alloy Comp. https://doi.org/10.1016/j.jallcom.2020.156446

    Article  Google Scholar 

  • Israr M, Raza F, Nazar N, Ahmad T, Khan MF, Park TJ, Basit MA (2020) Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties. Appl Nanosci 10:3805–3817

    Article  CAS  Google Scholar 

  • Jalili R, Khataee A (2020) Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chemic Toxicol. https://doi.org/10.1016/j.fct.2020.111806

    Article  Google Scholar 

  • Kesavan G, Chen S-M (2020) Sonochemically exfoliated graphitic-carbon nitride for the electrochemical detection of flutamide in environmental samples. Diamond Related Mater. https://doi.org/10.1016/j.diamond.2020.107975

    Article  Google Scholar 

  • Kohlhauser B, Vladu CI, Gachot C, Mayrhofer PH, Ripoll MR (2021) Reactive in-situ formation and self-assembly of MoS2 nanoflakes in carbon tribofilms for low friction. Mater Desig. https://doi.org/10.1016/j.matdes.2020.109427

    Article  Google Scholar 

  • Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126351

    Article  Google Scholar 

  • Li Z, Li M, Zhang Z, Li P, Zang Y, Liu X (2020) Antibiotics in aquatic environments of China: a review and meta-analysis. Ecotoxicol Environ Safety. https://doi.org/10.1016/j.ecoenv.2020.110668

    Article  Google Scholar 

  • Liu H, Chen D, Wang Z, Jing H, Zhang R (2017) Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl Catal B Environ 203:300–313

    Article  CAS  Google Scholar 

  • Louzoun Zada S, Green KD, Shrestha SK, Herzog IM, Garneau-Tsodikova S, Fridman M (2018) Derivatives of ribosome-inhibiting antibiotic chloramphenicol inhibit the biosynthesis of bacterial cell wall. ACS Infec Diseas 4:1121–1129

    Article  CAS  Google Scholar 

  • Luo M et al (2020) Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite. Small 16:2001100

    Article  CAS  Google Scholar 

  • Lyu J, Yang L, Zhang L, Ye B, Wang L (2020) Antibiotics in soil and water in China—a systematic review and source analysis. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.115147

    Article  Google Scholar 

  • Ma X, Li M, Zhang J, Wang R, Jin S (2021) Recognition and selective extraction of poly-γ-glutamic acid based on molecular imprinting technology. Intern J Bio Macromol 172:1–9

    Article  CAS  Google Scholar 

  • Moudgil P, Bedi JS, Aulakh RS, Gill JPS, Kumar A (2019) Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Analyt Method 12:338–346

    Article  Google Scholar 

  • Munawar A, Tahir MA, Shaheen A, Lieberzeit PA, Khan WS, Bajwa SZ (2018) Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J Hazard Mater 15(342):96–106

    Article  Google Scholar 

  • Ni Y, Wang R, Zhang W, Shi S, Zhu W, Liu M, Yan C, Xie X, Wang J (2021) Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: synthesis, efficacy and mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126528

    Article  Google Scholar 

  • Park IS, Kim DK, Adanyi N, Varadi M, Kim N (2004) Development of a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosens Bioelectron 19:667–674

    Article  CAS  Google Scholar 

  • Sakaushi K, Lyalin A, Tominaka S, Taketsugu T, Uosaki K (2017) Two-dimensional corrugated porous carbon-, nitrogen-framework/metal heterojunction for efficient multielectron transfer processes with controlled kinetics. ACS Nano 11:1770–1779

    Article  CAS  Google Scholar 

  • Sakthivel M, Sukanya R, Chen SM, Ho KC (2018) Synthesis and characterization of samarium-substituted molybdenum diselenide and its graphene oxide nanohybrid for enhancing the selective sensing of chloramphenicol in a milk sample. ACS Appl Mater Interfac 10:29712–29723

    Article  CAS  Google Scholar 

  • Shaheen A, Taj A, Liberzeit PA, Mujahid A, Hameed S, Yu H, Mahmood A, Webster TJ, Rashid MH, Khan WS, Bajwa SZ (2020) Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloid Surf B Biointerfac. https://doi.org/10.1016/j.colsurfb.2020.110775

    Article  Google Scholar 

  • Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi D (2020) 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11:779

    Article  Google Scholar 

  • Tahir M, Cao C, Mahmood N, Butt FK, Mahmood A, Idrees F, Hussain S, Tanveer M, Ali Z, Aslam I (2014) Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl Mater Interfaces 6:1258–1265

    Article  CAS  Google Scholar 

  • Taj A, Zia R, Xu J, Younis S, Estrela P, Mahmood A, Rehman A, Khan WS, Bajwa SZ (2020) Biogenic preparation of doughnut shaped manganese nanograins embellished on graphene for superior interfacial binding of biomarkers. J Mat Res Tech. https://doi.org/10.1016/j.jmrt.2020.06.054

    Article  Google Scholar 

  • Uzoma PC, Hu H, Khadem M, Penkov OV (2020) Tribology of 2D nanomaterials: a review. Coatings 10:897

    Article  CAS  Google Scholar 

  • Veach BT, Collaborators Bandara N, Broadaway B, Casey C, Fong A, Karmakar A, Mayweather M, Morara A, Williams N, Wright B, Ye L (2020) Determination of chloramphenicol and nitrofuran metabolites in cobia, croaker, and shrimp using microwave-assisted derivatization, automated SPE, and LC-MS/MS–results from a US food and drug administration level three inter-laboratory study. J AOAC Intern 103:1043–1051

    Article  Google Scholar 

  • Wachiralurpan S, Phung-On I, Chanlek N, Areekit S, Chansiri K, Lieberzeit PA (2021) In-situ monitoring of real-time loop-mediated isothermal amplification with QCM: detecting Listeria monocytogenes. Biosensors 11(9):308

    Article  CAS  Google Scholar 

  • Wu J et al (2020) 2D Layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 16:1906563

    Article  CAS  Google Scholar 

  • Xia Y, Su R, Huang R, Ding L, Wang L, Qi W, He Z (2017) Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosens Bioelectron 92:266–272

    Article  CAS  Google Scholar 

  • Xiao L, Xu R, Yuan Q, Wang F (2017) Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167:39–43

    Article  CAS  Google Scholar 

  • Younas M, Rezakazemi M, Daud M, Wazir MB, Ahmad S, Ullah N, Ramakrishna S (2020) Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2020.100849

    Article  Google Scholar 

  • Zaidi SA (2020) Molecular imprinting: a useful approach for drug delivery. Mater Sci Energ Technol 3:72–77

    CAS  Google Scholar 

  • Zepp R et al (2020) Fragmentation of polymer nanocomposites: modulation by dry and wet weathering, fractionation, and nanomaterial filler. Environ Sci Nano 7:1742–1758

    Article  CAS  Google Scholar 

  • Zhang S, Ma L, Ma K, Xu B, Liu L, Tian W (2018) Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and graphene oxide. ACS Omega 3:12886–12892

    Article  CAS  Google Scholar 

  • Zhang J, Chen H, Zhao M, Liu G, Wu J (2020a) 2D nanomaterials for tissue engineering application. Nano Res 13:2019–2034

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang L, Ta Lv, Chu PK, Huo K (2020b) Two-dimensional transition metal chalcogenides for alkali metal ions storage. Chemsuschem 13:1114–1154

    Article  CAS  Google Scholar 

  • Zhang J, Wang Y, Lu X (2021a) Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal Bioanal Chem. https://doi.org/10.1007/s00216-020-03138-x

    Article  Google Scholar 

  • Zhang Y, Wu J, Qu Y, Jia L, Jia B, Moss DJ (2021b) Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films. J Lightwave Technol 39:4671–4683

    Article  CAS  Google Scholar 

  • Zhao W, Guo Y, Wang S, He H, Sun C, Yang S (2015) A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. App Catal B-Environ 165:335–343

    Article  CAS  Google Scholar 

  • Zhao C, Si Y, Pan B, Taha AY, Pan T, Sun G (2020) Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta. https://doi.org/10.1016/j.talanta.2020.121054

    Article  Google Scholar 

Download references

Acknowledgements

Dr Sadia Z. Bajwa is highly thankful to the financial assistance by Higher Education Commission (HEC) of Pakistan via Grant No. NRPU-6116.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faheem K. Butt, Waheed S. Khan or Sadia Z. Bajwa.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, A., Taj, A., Jameel, F. et al. Synthesis of graphitic carbon nitride nanosheets-layered imprinted polymer system as a nanointerface for detection of chloramphenicol. Appl Nanosci 12, 139–150 (2022). https://doi.org/10.1007/s13204-021-02220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02220-9

Keywords

Navigation