Skip to main content

Advertisement

Log in

Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The global scenario turned towards converging their focus on sustainability owing to its adverse response in the climatic conditions, else unlike other planets earth may go unbefitting to live. The major contributor in for this worsening scenario of the climatic condition is polluting the atmosphere by various ways. In addition to this, the major polluting factor around the globe is vehicle and industrial waste which is contaminating the environment on hourly basis. The derived outcome of this issue is to cut the pollutants of the fuel mixing with atmospheric air and when this is either stopped or reduced, it saves the mother earth from pollution. The biofuel derived from wastes based catalysts is considered to be a better alternative and such biofuels have lesser environmental hazards when compared with conventional fossil fuels. So, the review in this article narrows down to waste catalyst derived biofuel along with their performance which contributes in the self-sustenance of biodiesel production. The article flow through the path of progress of biofuel and about the destination of its progress in near future which is discussed along with the patent landscape analysis. Scope of the article can be clearly understood from the facts revealed from the patent analysis. So, the first segment discusses about the ways to derive the biofuel from the agriculture waste, biomasses, gasification as well as from the microalgae. Focus of this review has also been given for the description of various natural sources used to derive catalysts, performance of the catalysts used for biodiesel production in terms of its efficiency and the challenges associated with the use of natural sources as catalysts for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13 
Fig. 14

Similar content being viewed by others

References

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34:1807e36

    Google Scholar 

  • Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919

    Article  CAS  Google Scholar 

  • Achinas S, Euverink GJW (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Elect Biotechnol 23:44–53

    Article  Google Scholar 

  • Alagumalai A, Mahian O, Hollmann F, Zhang W (2021) Environmentally benign solid catalysts for sustainable biodiesel production: a critical review. Sci Total Environ 768:144856

    Article  CAS  Google Scholar 

  • Alrobaian A, Rajasekar V, Alagumalai A (2020) Critical insight into biowaste-derived biocatalyst for biodiesel production. Environ Prog Sustain Energy 39(4):13391

    Article  Google Scholar 

  • Anbuchezhian N, Priyadharshini M, Balaji Devarajan AK, Priya LR (2020) Machine learning frameworks for additive manufacturing—a review. Solid State Technol 63(6):12310–12319

    Google Scholar 

  • Arauzo J, Radlein D, Piskorz J, Scott DS (1994) A new catalyst for the catalytic gasification of biomass. Energy Fuels 8(6):1192–1196

    Article  CAS  Google Scholar 

  • Arauzo J, Radlein D, Piskorz J, Scott DS (1997) Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts. Ind Eng Chem Res 36(1):67–75

    Article  CAS  Google Scholar 

  • Asadullah M, Fujimoto K, Tomishige K (2001) Catalytic performance of Rh/CeO2 in the gasification of cellulose to synthesis gas at low temperature. Ind Eng Chem Res 40(25):5894–5900

    Article  CAS  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177e80

    Article  Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  • Aznar MP, Caballero MA, Gil J, Martin JA, Corella J (1998) Commercial steam reforming catalysts to improve biomass gasification with steam−oxygen mixtures. 2. Catalytic tar removal. Ind Eng Chem Res 37(7):2668–2680

    Article  CAS  Google Scholar 

  • Aznar MP, Caballero MA, Sancho JA, Francés E (2006) Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process Technol 87(5):409–420

    Article  CAS  Google Scholar 

  • Baker EG, Mudge LK (1984) Mechanisms of catalytic biomass gasification. J Anal Appl Pyrol 6(3):285–297

    Article  CAS  Google Scholar 

  • Baker EG, Mudge LK, Brown MD (1987) Steam gasification of biomass with nickel secondary catalysts. Ind Eng Chem Res 26(7):1335–1339

    Article  CAS  Google Scholar 

  • Balaji D, Ramesh M, Kannan T, Deepan S, Bhuvaneswari V, Rajeshkumar L (2021) Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites. Mater Today Proc 42:350–355

    Article  CAS  Google Scholar 

  • Balaji Devarajan V, Bhuvaneswari AK, Priya GN, Joenas J, Nishanth P, Rajeshkumar L, Kathiresan G, Amarnath V (2021) Renewable energy resources: case studies. IOP Conf Ser Mater Sci Eng 1145:012026. https://doi.org/10.1088/1757-899X/1145/1/012026

    Article  Google Scholar 

  • Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Ethanol production from olive oil extraction residue pretreated with hot water. Appl Biochem Biotechnol 98:717–732

    Article  Google Scholar 

  • Bangala DN, Abatzoglou N, Chornet E (1998) Steam reforming of naphthalene on Ni–Cr/Al2O3 catalysts doped with MgO, TiO2, and La2O3. AIChE J 44(4):927–936

    Article  CAS  Google Scholar 

  • Banowetz GM, Griffith SM, El-Nashaar HM (2009) Mineral content of grasses grown for seed in low rainfall areas of the Pacific Northwest and analysis of ash from gasification of bluegrass (Poa pratensis L.) straw. Energy Fuels 23(1):502–506

    Article  CAS  Google Scholar 

  • Bartholomew CH, Sorensen WL (1983) Sintering kinetics of silica-and alumina-supported nickel in hydrogen atmosphere. J Catal 81(1):131–141

    Article  CAS  Google Scholar 

  • Bartholomew CH, Weatherbee GD, Jarvi GA (1980) Effects of carbon deposits on the specific activity of nickel and nickel bimetallic catalysts. Chem Eng Commun 5(1–4):125–134

    Article  CAS  Google Scholar 

  • Baum R, Wajszczuk K, Peplinski B, Wawrzynowicz J (2013) potential for agricultural biomass production for energy purposes in Poland: a review. Contem Econo 7(1):63–74

    Article  Google Scholar 

  • Beer L, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Article  CAS  Google Scholar 

  • Bhuvaneswari V, Rajeshkumar L, Balaji D, Saravanakumar R (2020) Study of mechanical and tribological properties of bio-ceramics reinforced aluminium alloy composites. Solid State Technol 63:4552–4560

    Google Scholar 

  • Bhuvaneswari V, Priyadharshini M, Deepa C, Balaji D, Rajeshkumar L, Ramesh M (2021) Deep learning for material synthesis and manufacturing systems: a review. Today Proc Mater. https://doi.org/10.1016/j.matpr.2020.11.351

    Article  Google Scholar 

  • Biffinger JC, Ringeisen BR (2008) Engineering microbial fuels cells: recent patents and new directions. Recent Pat Biotechnol 2(3):150–155

    Article  CAS  Google Scholar 

  • Biofuels 1 (2014) What are biofuels? Available online: http://www.greenfacts.org/en/biofuels/l-2/1-definition.htm (Accessed on 25 May 2014).

  • Blinová L, Bartošová A, Gerulová K (2015) Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Res Pap Fac Mater Sci Technol Slovak Univ Technol 23(36):109

    Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, Adler P, Stinner W, Reinhold G, Hering T, Blanke C (2016a) A review of biomass potential and current utilization Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 95:257–272

    Article  Google Scholar 

  • Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, Adler P, Stinner W, Reinhold G, Hering T, Blanke C (2016b) A review of biomass potential and current utilisation Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenerg 95:257–272

    Article  Google Scholar 

  • Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17:480e8

    Article  Google Scholar 

  • Caballero MA, Aznar MP, Gil J, Martín JA, Francés E, Corella J (1997) Commercial steam reforming catalysts to improve biomass gasification with steam–oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor. Ind Eng Chem Res 36(12):5227–5239

    Article  CAS  Google Scholar 

  • Caballero MA, Corella J, Aznar MP, Gil J (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39(5):1143–1154

    Article  CAS  Google Scholar 

  • Cao L, Man T, Kruk M (2009) Synthesis of ultra-large-pore SBA-15 silica with twodimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem Mater 21:1144–1153

    Article  CAS  Google Scholar 

  • Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R (2012) Linking genome content to biofuel production yields: a meta-analysis a major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:295

    Article  CAS  Google Scholar 

  • Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6:85

    Article  CAS  Google Scholar 

  • Chen D et al (2006) Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. J Mater Chem 16:1511–1519

    Article  CAS  Google Scholar 

  • Chen CL, Ho CE, Yau H-T (2012) Performance analysis and optimization of a solar powered stirling engine with heat transfer considerations. Energies 5:3573–3585

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    Article  CAS  Google Scholar 

  • Corella J, Orío A, Aznar P (1998) Biomass gasification with air in fluidized bed: reforming of the gas composition with commercial steam reforming catalysts. Ind Eng Chem Res 37(12):4617–4624

    Article  CAS  Google Scholar 

  • Dacquin JP, Dhainaut JRM, Duprez D, Royer SB, Lee AF, Wilson K (2009) An efficient route to highly organized, tunable macroporous−mesoporous alumina. J Am Chem Soc 131:12896–12897

    Article  CAS  Google Scholar 

  • Dacquin JP, Cross HE, Brown DR, Duren T, Williams JJ, Lee AF, Wilson K (2010) Interdependent lateral interactions, hydrophobicity and acid strength and their influence on the catalytic activity of nanoporous sulfonic acid silicas. Green Chem 12:1383–1391. https://doi.org/10.1039/c0gc00045k

    Article  CAS  Google Scholar 

  • Dacquin JP, Lee AF, Pirez C, Wilson K (2012) Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chem Commun 48:212–214

    Article  CAS  Google Scholar 

  • Day C, Tseng YC, Puyol R, Nissan J (2014) Efficiency comparisons of secondary biofuels. PAM Rev 1:70–89

    Article  Google Scholar 

  • De Lasa H, Salaices E, Mazumder J, Lucky R (2011) Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem Rev 111(9):5404–5433

    Article  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  • Devi L, Ptasinski KJ, Janssen FJ (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenerg 24(2):125–140

    Article  CAS  Google Scholar 

  • Devi L, Ptasinski KJ, Janssen FJ, van Paasen SV, Bergman PC, Kiel JH (2005) Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renew Energy 30(4):565–587

    Article  CAS  Google Scholar 

  • Dewulf J, van Langenhove H, van de Velde B (2005) Exergy-based efficiency and renewability assessment of biofuel production. Environ Sci Technol 39:3878–3882

    Article  CAS  Google Scholar 

  • Dhainaut J, Dacquin JP, Lee AF, Wilson K (2010) Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem 12:296–303. https://doi.org/10.1039/b919341c

    Article  CAS  Google Scholar 

  • Dhepe PL, Fukuoka A (2008) Cellulose conversion under heterogeneous catalysis. Chem Sustain Energy Mater 1(12):969–975

    CAS  Google Scholar 

  • Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente JN, Sastre E (2000) Combined alkyl and sulfonic acid functionalization of MCM-41-type silica: part 1. Synth Characterizat J Catal 193:283–294. https://doi.org/10.1006/jcat.2000.2898

    Article  Google Scholar 

  • Dibbern HC, Olesen P, Rostrup-Nielsen JR, Tottrup PB, Udengaard NR (1986) Make low H/sub2//CO syngas using sulfur passivated reforming. Hydrocar Process (US) 65(1).

  • Dietenberger MA, Anderson M (2007) Vision of the US biofuel future: a case for hydrogen-enriched biomass gasification. Ind Eng Chem Res 46(26):8863–8874

    Article  CAS  Google Scholar 

  • Digman B, Joo HS, Kim DS (2009) Recent progress in gasification/pyrolysis technologies for biomass conversion to energy. Environ Progress Sustain Energy 28(1):47–51

    Article  CAS  Google Scholar 

  • Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W (2015) Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17:769–775

    Article  CAS  Google Scholar 

  • Douskova I, Doucha J, Livansky K et al (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82(1):179–185

    Article  CAS  Google Scholar 

  • Dubini A (2011) Green energy: biofuel production from Chlamydomonas reinhardtii. Biochem Soc 33:20–23

    Article  CAS  Google Scholar 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrogen Energy 41:12772e98

    Article  Google Scholar 

  • Ferm A (1993) Birch production and utilization for energy. Biomass Bioenerg 4(6):391–404

    Article  Google Scholar 

  • Florin NH, Harris AT (2008) Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem Eng Sci 63(2):287–316

    Article  CAS  Google Scholar 

  • Foscolo PU (2012) The unique project–integration of gasifier with gas cleaning and conditioning system. International Seminar on Gasification

    Google Scholar 

  • Gan J, Smith CT (2012) Biomass utilization allocation in biofuel production: model and application. Internat J Forest Eng 23(1):38–47

    Article  Google Scholar 

  • Ganesan SR, Manigandan S, Melvin SS, Shanmuganathan R, Brindhadevi K, Chi NTL, Duc PA, Pugazhendhi A (2020) A review on prospective production of biofuel from microalgae. Biotechnol Rep 27:e00509

    Article  Google Scholar 

  • Garcia L, Salvador ML, Bilbao R, Arauzo J (1998) Influence of calcination and reduction conditions on the catalyst performance in the pyrolysis process of biomass. Energy Fuels 12(1):139–143

    Article  CAS  Google Scholar 

  • Garcia L, Salvador ML, Arauzo J, Bilbao R (1999) Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition. Energy Fuels 13(4):851–859

    Article  CAS  Google Scholar 

  • Garcia L, Benedicto A, Romeo E, Salvador ML, Arauzo J, Bilbao R (2002) Hydrogen production by steam gasification of biomass using Ni−Al coprecipitated catalysts promoted with magnesium. Energy Fuels 16(5):1222–1230

    Article  CAS  Google Scholar 

  • Garg S, Soni K, Kumaran GM, Bal R, Gora-Marek K, Gupta JK, Sharma LD, Dhar GM (2009) Acidity and catalytic activities of sulfated zirconia inside SBA-15. Catal Today 141:125–129

    Article  CAS  Google Scholar 

  • Gaudino MC, Valentin R, Brunel D, Fajula F, Quignard F, Riondel A (2005) Titaniumbased solid catalysts for transesteritication of methyl-methacrylate by catalysis 1-butanol: the homogeneous contribution. Appl Catal A Gen 280:157–164

    Article  CAS  Google Scholar 

  • Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493(7433):514–517

    Article  CAS  Google Scholar 

  • Gheorghiu S, Coppens MO (2004) Optimal bimodal pore networks for heterogeneous catalysis. AIChE J 50:812–820

    Article  CAS  Google Scholar 

  • Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17:462e71

    Article  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemist 46:304–309

    Article  CAS  Google Scholar 

  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513e22

    Article  Google Scholar 

  • Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474

    Article  CAS  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013a) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013b) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Biores Technol 135:191–198

    Article  CAS  Google Scholar 

  • Ho SH, Li PJ, Liu CC, Chang JS (2013c) Bioprocess development on microalgaebased CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149

    Article  CAS  Google Scholar 

  • https://patentscope.wipo.int/search. Accessed on 2nd May 2021

  • https://www.idtechex.com. Accessed on 1st May 2021

  • https://www.pnas.org. Accessed on 1st May 2021

  • https://www.researchgate.net/figure/Comparison-of-algae-with-different-crops-for-biofuel_tbl4_233746441 Accessed on 2nd May 2021

  • Hu G, Xu S, Li S, Xiao C, Liu S (2006) Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Process Technol 87(5):375–382

    Article  CAS  Google Scholar 

  • Huang W-D, Percival Zhang YH (2011) Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems. PLoS ONE 6:1–10

    CAS  Google Scholar 

  • Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Edn 46:7184–7201

    Article  CAS  Google Scholar 

  • Ibrahim HAH (2012) Pretreatment of straw for bioethanol production. Energy Procedia 14:542–551

    Article  CAS  Google Scholar 

  • Ilmen M, den Hann R, Brevnova E, Mcbride J, Wiswall E, Froehlich A, Koivula A et al (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30

    Article  CAS  Google Scholar 

  • Jang MO, Choi G (2018) Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochem Eng J 134:30–43

    Article  CAS  Google Scholar 

  • Kakucs O, Kun-Szabó T (2009) Utilization potential of solid biomass for energy production in the Ajka Subregion. Agri Environ 1:104–115

    Google Scholar 

  • Karimi Alavijeh M, Yaghmaei S (2016) Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Manage 52:375–394

    Article  CAS  Google Scholar 

  • Kinoshita CM, Wang Y, Zhou J (1995) Effect of reformer conditions on catalytic reforming of biomass-gasification tars. Ind Eng Chem Res 34(9):2949–2954

    Article  CAS  Google Scholar 

  • Knápek J, Králík T, Valentová M, Voríšek T (2015) Effectiveness of biomass for energy purposes: a fuel cycle approach. Wires Energy Environ 4:575–586

    Article  Google Scholar 

  • Kojima E, Zhang K (1999) Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87(6):811–815

    Article  CAS  Google Scholar 

  • Lee SW, Nam SS, Kim SB, Lee KW, Choi CS (2000) The effect of Na2CO3 on the catalytic gasification of rice straw over nickel catalysts supported on kieselguhr. Korean J Chem Eng 17(2):174–178

    Article  CAS  Google Scholar 

  • Lee SJ, Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4(2):92

    Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20(3):280–285

    Article  CAS  Google Scholar 

  • Lin CSK et al (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6:426–464

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70e9

    Article  Google Scholar 

  • Lu Y (2006) Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem Int Edn 45:7664–7667

    Article  CAS  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564

    Article  CAS  Google Scholar 

  • Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol 91(8):903–909

    Article  CAS  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47

    Article  CAS  Google Scholar 

  • Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem Mater 12:2448–2459. https://doi.org/10.1021/cm0010304

    Article  CAS  Google Scholar 

  • Matsakas L, Nitsos C, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Olsson L, Christakopoulos P (2018) A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol Biofuels 11:160

    Article  Google Scholar 

  • Mbaraka IK, Radu DR, Lin VSY, Shanks BH (2003) Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J Catal 219:329–336

    Article  CAS  Google Scholar 

  • Melero JA, Bautista LF, Morales G, Iglesias J, Briones D (2008) Biodiesel production with heterogeneous sulfonic acid-functionalized mesostructured catalysts. Energy Fuels 23:539–547

    Article  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272e80

    Article  Google Scholar 

  • Milne TA, Evans RJ, Abatzaglou N (1998) Biomass gasifier ''Tars'': Their nature, formation, and conversion, US. https://doi.org/10.2172/3726

  • Mudge LK, Baker EG, Mitchell DH, Brown MD (1985) Catalytic steam gasification of biomass for methanol and methane production. J Sol Energy Eng 107(1):88–92

    Article  CAS  Google Scholar 

  • Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23(8):498–508

    Article  CAS  Google Scholar 

  • Najafi G, Ghobadian B, Tavakoli T, Yusaf T (2009) Potential of bioethanol production from agricultural wastes in Iran. Renew Sustain Energ Rev 13(6–7):1418–1427

    Article  CAS  Google Scholar 

  • Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161–166

    Article  CAS  Google Scholar 

  • Nigam PS (2011) A Singh Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Nishikawa J, Nakamura K, Asadullah M, Miyazawa T, Kunimori K, Tomishige K (2008) Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catal Today 131(1–4):146–155

    Article  CAS  Google Scholar 

  • Nitsos CK, Choli-Papadopoulou T, Matis KA, Triantafyllidis KS (2016) Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustain Chem Eng 4(9):4529–4544

    Article  CAS  Google Scholar 

  • Nitsos C, Matsakas L, Triantafyllidis K, Rova U, Christakopoulos P (2017) Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterization of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production. Biofuels 65:1–14

    Google Scholar 

  • Olivares A, Aznar MP, Caballero MA, Gil J, Francés E, Corella J (1997) Biomass gasification: produced gas upgrading by in-bed use of dolomite. Ind Eng Chem Res 36(12):5220–5226

    Article  CAS  Google Scholar 

  • Papilo P, Kusumanto I, Kunaifi K (2017a) Assessment of agricultural biomass potential to electricity generation in Riau Province. IOP Conf Ser Earth Environ Sci 65(1):012006

    Article  Google Scholar 

  • Papilo P, Kusumanto I, Kunaifi K (2017b) Assessment of agricultural biomass potential to electricity generation in Riau Province. IOP Conf Series Earth Environ Sci 65(01):2006

    Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    Article  CAS  Google Scholar 

  • Paster MD, Ahluwalia RK, Berry G, Elgowainy A, Lasher S, McKenney K, Gardiner M (2011) Hydrogen storage technology options for fuel cell vehicles: well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int J Hydrogen Energy 36:14534–14551

    Article  CAS  Google Scholar 

  • Pfeifer C, Koppatz S, Hofbauer H (2011) Catalysts for dual fluidised bed biomass gasification an experimental study at the pilot plant scale. Biomass Conv Bioref 1(2):63–74

    Article  CAS  Google Scholar 

  • Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23:2325–2341

    Article  CAS  Google Scholar 

  • Pirez C, Caderon JM, Dacquin JP, Lee AF, Wilson K (2012) Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification. ACS Catal 2:1607–1614

    Article  CAS  Google Scholar 

  • Quanyuan W, Heqing L, Zhong Y, Kangqiang L, Min Z, Xiujun L, Yongshan N (2019) Preparation method of biofuel. Patent number CN109536194

  • Quyn DM, Wu H, Li CZ (2002) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel 81(2):143–149

    Article  CAS  Google Scholar 

  • Raganati F, Curth S, Götz P, Olivieri G, Marzocchella A (2012) Butanol production from lignocellulosic-based hexoses and pentoses by fermentation of Clostridium acetobutylicum. Chem Eng Transac 27:91–96

    Google Scholar 

  • Ramesh M, Rajeshkumar L (2018) Wood flour filled thermoset composites. In: Asiri AM, Khan A, Khan I, Ahmad Bhawani S (eds) Thermoset composites: preparation, properties and applications, 38. Materials Research Foundations, Berlin, pp 33–65

    Google Scholar 

  • Ramesh M, Rajeshkumar L (2020a) Bioadhesives. In: Inamuddin R, Boddula MI, Ahamed Asiri AM (eds) Green adhesives. Scrivener Publishing, Beverly, pp 145–167

    Chapter  Google Scholar 

  • Ramesh M, Kumar LR, Khan A, Asiri AM (2020b) In: Khan A, Jawaid M, Raveendran SN, Ahmed Asiri AM (ed) Self-healing polymer composites and its chemistry, Self-Healing Composite Materials: From design to applications, Woodhead publishing, UK, pp 415–427

  • Ramesh M, Deepa C, Kumar LR, Sanjay MR, Siengchin S (2020c) Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. J Ind Text. https://doi.org/10.1177/1528083720924730

    Article  Google Scholar 

  • Ramesh M, RajeshKumar L, Bhuvaneshwari V (2021a) Bamboo fiber reinforced composites. In: Jawaid M, Mavinkere RS, Siengchin S (eds) Bamboo fiber composites. Composites science and technology. Springer, Singapore, pp 1–13

    Google Scholar 

  • Ramesh M, Maniraj J, Rajesh Kumar L (2021b) Biocomposites for energy storage. Biobased composites: processing, characterization, properties, and applications. In: Khan A, Rangappa SM, Siengchin S, Asiri AM (eds) Biobased composites: processing, characterization, properties, and applications, 1st edn. Wiley Online Library, New Jersey, pp 123–142

    Chapter  Google Scholar 

  • Ramesh M, Rajeshkumar L, Balaji D, Bhuvaneswari V (2021c) Green composite using agricultural waste reinforcement. In: Thomas S, Balakrishnan P (eds) Green composites. Materials horizons: from nature to nanomaterials. Springer, Singapore, pp 21–34

    Chapter  Google Scholar 

  • Ramesh M, Rajeshkumar L (2021d) Technological advances in analyzing of soil chemistry. In: Inamuddin MI, Ahamed RB, Altalhi T (eds) Applied soil chemistry. Wiley-Scrivener Publishing LLC, pp 61–78

    Chapter  Google Scholar 

  • Ramesh M, Rajeshkumar L, Balaji D (2021e) Aerogels for Insulation Applications. In: Inamuddin E (ed) Aerogels II: preparation, properties and applications, vol 98. Materials Research Foundations, pp 57–76

    Chapter  Google Scholar 

  • Ramesh M, Rajeshkumar L, Deepa C, Tamil Selvan M, Kushvaha V, Asrofi M (2021f) Impact of silane treatment on characterization of ipomoea staphylina plant fiber reinforced epoxy composites. J Natur Fib. https://doi.org/10.1080/15440478.2021.1902896

    Article  Google Scholar 

  • Ramesh M, Rajeshkumar L, Balaji D (2021g) Mechanical and dynamic properties of ramie fiber reinforced composites. In: Nagarajan R, Thiagamani SMK, Krishnasamy S, Siengchin S (eds) Mechanical and dynamic properties of biocomposites. Wiley, pp 275–322

    Chapter  Google Scholar 

  • Ramesh M, Rajeshkumar L, Saravanakumar R (2021h) Mechanically-induced self-healable materials. In: Inamuddin MI, Ahamed RB, Altalhi TA (eds) Self-healing smart materials. Wiley, pp 379–404

    Google Scholar 

  • Ramesh M, Deepa C, Niranjana K, Rajeshkumar L, Bhoopathi R, Balaji D (2021i) Influence of Haritaki (Terminalia chebula) nano-powder on thermo-mechanical, water absorption and morphological properties of Tindora (Coccinia grandis) tendrils fiber reinforced epoxy composites. J Nat Fib. https://doi.org/10.1080/15440478.2021.1921660

    Article  Google Scholar 

  • Ramesh M, Rajeshkumar L, Balaji D, Bhuvaneswari V, Sivalingam S (2021j) Self-healable conductive materials. In: Inamuddin MI, Ahamed RB, Altalhi TA (eds) Self-healing smart materials. Wiley, pp 297–320

    Google Scholar 

  • Ramesh M, Deepa C, Tamil Selvan M, Rajeshkumar L, Balaji D, Bhuvaneswari V (2021k) Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.480

    Article  Google Scholar 

  • Rostrup Nielsen JR (1997) Industrial relevance of coking. Catal Today 37(3):225–232

    Article  CAS  Google Scholar 

  • Rostrupnielsen JR, Hansen JB (1993) CO2-reforming of methane over transition metals. J Catal 144(1):38–49

    Article  CAS  Google Scholar 

  • Schumacher C, Gonzalez J, Wright PA, Seaton NA (2005) Generation of atomistic models of periodic mesoporous silica by kinetic Monte Carlo simulation of the synthesis of the material. J Phys Chem B 110:319–333. https://doi.org/10.1021/jp0551871

    Article  CAS  Google Scholar 

  • Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613e9

    Article  Google Scholar 

  • Senthil M, Visagavel K, Avinash A (2016) Effects of exhaust gas recirculation on emission characteristics of Mahua (Madhuca Indica) biodiesel using red mud as catalyst. Energy Sour Part A Recov Utilizat Environ Effects 38(6):876–881

    Article  CAS  Google Scholar 

  • Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2004) Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Appl Catal A Gen 273:239–248

    Article  CAS  Google Scholar 

  • Sohel MI, Jack MW (2011) Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus. Biores Technol 102:2617–2622

    Article  CAS  Google Scholar 

  • Srivastava RK (2019) Bio-Energy production by contribution of effective and suitable microbial system. Mater Sci Energy Technol 2(2):308–318

    Google Scholar 

  • Subramaniam D, Murugesan A, Avinash A (2013) An inclusive view on biodiesel production by heterogeneous catalyst and its engine operational characteristics. J Renew Sustain Energy 5(3):033135

    Article  Google Scholar 

  • Sun JH, Shan Z, Maschmeyer T, Coppens MO (2003) Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir 19:8395–8402

    Article  CAS  Google Scholar 

  • Sutton D, Kelleher B, Ross JR (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73(3):155–173

    Article  CAS  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1e9

    Article  Google Scholar 

  • Tomishige K, Miyazawa T, Asadullah M, Ito SI, Kunimori K (2003) Catalyst performance in reforming of tar derived from biomass over noble metal catalysts. Green Chem 5(4):399–403

    Article  CAS  Google Scholar 

  • Van Vliet OP, Faaij AP, Turkenburg WC (2009) Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Conv Manag 50(4):855–876

    Article  Google Scholar 

  • Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Edn 50:10 502-10 509

    Article  Google Scholar 

  • Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV et al (2013) Genetic evaluation of Thermoanaerobactor spp for the construction of designer co-cultures to improve lignocellulosic biofuel production. PLoS ONE 8(3):e59362. https://doi.org/10.1371/journal.pone.0059362

    Article  CAS  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev TNSI (2016) Biofuel production from plant and algal biomass. Int J Hydrogen Energy 41(39):17257–17273

    Article  CAS  Google Scholar 

  • Wang S, Lu GQ (1998a) Reforming of methane with carbon dioxide over Ni/Al2O3 catalysts: effect of nickel precursor. Appl Catal A 169(2):271–280

    Article  CAS  Google Scholar 

  • Wang S, Lu GM (1998b) CO2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique. Appl Catal B 16(3):269–277

    Article  CAS  Google Scholar 

  • Wang Z, Qin M, Zhu JY, Tian G, Li Z (2013) Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass. Biores Technol 130:783–788

    Article  CAS  Google Scholar 

  • Wang Y, Guo W, Cheng CL, Ho SH, Chang JS, Ren N (2016) Enhancing biobutanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol 200:557–564

    Article  CAS  Google Scholar 

  • Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20(4):412–419

    Article  CAS  Google Scholar 

  • Wernsman B, Mahorter RG, Siergiej R, Link SD, Wehrer RJ, Belanger SJ, Fourspring P, Murray S, Newman F, Taylor D, Rahmlow T (2005) Advanced thermophotovoltaic devices for space nuclear power systems. AIP Conf Proc 746:1441–1448

    Article  CAS  Google Scholar 

  • Wilson K, Lee AF (2016) Catalyst design for biorefining. Philos Trans R Soc Math Phys Eng Sci 374(2061):20150081

    Google Scholar 

  • Wilson K, Rénson A, Clark JH (1999) Novel heterogeneous zinc triflate catalysts for the rearrangement of α-pinene oxide. Catal Lett 61:51–55. https://doi.org/10.1023/A:1019000317198

    Article  CAS  Google Scholar 

  • Wu H, Quyn DM, Li CZ (2002) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III .The importance of the interactions between volatiles and char at high temperature. Fuel 81(8):1033–1039

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramoleculartemplated mesoporous materials. Angew Chem Int Edn 38:56–77

    Article  CAS  Google Scholar 

  • Zai ZW, Fang S, Zhao J, Zhao C, Wang J, Mi M, Junlu L, Yaping R, Xuecheng L, Yazhou C (2015) Method for preparing biofuel through graded catalytic liquefaction of straw. Patent number CN103387840

  • Zhai N, Mao C, Feng Y, Zhang T, Xing Z, Wang Y, Zou S, Yin D, Han X, Ren G, Yang G (2015a) Current status and future potential of energy derived from Chinese agricultural land: a review. Biomed Res Int. https://doi.org/10.1155/2015/824965

    Article  Google Scholar 

  • Zhai N, Mao C, Feng Y, Zhang T, Xing Z, Wang Y, Zou S, Yin D, Han X, Ren G, Yang G (2015b) Current status and future potential of energy derived from Chinese agricultural land: a review. BioMed Res Internat 10:824–965

    Google Scholar 

  • Zhang X, Zhang F, Chan KY (2004) The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support. Mater Lett 58:2872–2877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rajeshkumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devarajan, B., Saravanakumar, R., Sivalingam, S. et al. Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. Appl Nanosci 12, 3677–3701 (2022). https://doi.org/10.1007/s13204-021-01948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01948-8

Keywords

Navigation