Skip to main content
Log in

Exploring electrocatalytic proficiencies of CuO nanostructure for simultaneous determination of bentazone and mexacarbate pesticides

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Pesticides are the most perilous organic compounds that are of major human health concern. The hazardous pesticides such as bentazone (BTZN) and mexacarbate (MCBT) which badly cause the environmental pollution and pose lethal impacts on human health. In an effort to develop a highly efficient, reliable and sensitive electrochemical sensor, the novel CuO nanostructures were synthesized through easy and green aqueous chemical growth procedure and used as sensitive probe for the simultaneous determination of bentazone and mexacarbate pesticides. The prepared material was used as conductive and catalytic tool for the modification of glassy carbon electrode (GCE). The exquisite CuO nanostructures were characterized by FTIR, FE-SEM, XRD, EDS, zeta sizer and zeta potential to reveal the functionalities, morphological texture, crystallinity, size and existing charge on the surface of nanostructures. The conductive nature and charge transfer kinetics of CuO/GCE was explored through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimized parameters, the sensitive and reliable simultaneous determination of two pesticides was carried out via CV and DPV that exhibited fluent determination process. The Ipa response was linearly proportional to the concentration of pesticides with low LOD and LOQ observed as (0.008 and 0.026 µM) for bentazone and (0.0015 and 0.004 µM) for mexacarbate, which is lower than the permissible limit set by US Health Advisory Level. Moreover, the developed sensor manifested tunable reusability, stability, and selectivity for both analytes. The proposed method is a reliable step towards the on-site detection of pesticides in various resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akinbulu IA, Nyokong T (2009) Characterization of polymeric film of a new manganese phthalocyanine complex octa-substituted with 2-diethylaminoethanethiol, and its use for the electrochemical detection of bentazon. Electrochim Acta 55(1):37–45

    CAS  Google Scholar 

  • Alatraktchi FA, Bakmand T, Dimaki M, Svendsen WE (2014) Novel membrane-based electrochemical sensor for real-time bio-applications. Sensors 14(11):22128–22139

    CAS  Google Scholar 

  • Alatraktchi FA, Breum Andersen S, Krogh Johansen H, Molin S, Svendsen WE (2016a) Fast selective detection of pyocyanin using cyclic voltammetry. Sensors 16(3):408

    Google Scholar 

  • Alatraktchi FAA, Johansen HK, Molin S, Svendsen WE (2016b) Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine 11(16):2185–2195

    CAS  Google Scholar 

  • Amanulla AM, Magdalane CM, Saranya S, Sundaram R, Kaviyarasu K (2021) Selectivity, stability and reproducibility effect of CeM-CeO2 modified PIGE electrode for photoelectrochemical behaviour of energy application. Surf Interface 22:100835

    Google Scholar 

  • Amin S, Solangi AR, Hassan D, Hussain N, Ahmed J, Baksh H (2020) Recent trends in development of nanomaterials based green analytical methods for environmental remediation. Curr Anal Chem 16:1–11

    Google Scholar 

  • Andreu V, Picó Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. TrAC Trends Anal Chem 23(10–11):772–789

    CAS  Google Scholar 

  • Ania CO, Béguin F (2007) Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions. Water Res 41(15):3372–3380

    CAS  Google Scholar 

  • Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083

    CAS  Google Scholar 

  • Arun K, Batra A, Krishna A, Bhat K, Aggarwal M, Francis PJ (2015) Surfactant free hydrothermal synthesis of copper oxide nanoparticles. Am j Mater Sci 5:36–38

    Google Scholar 

  • Bakhsh H, Buledi JA, Khand NH, Junejo B, Solangi AR, Mallah A, Sherazi STH (2021) NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. Journal of Food Meas Charact. https://doi.org/10.1007/s11694-021-00860-7

    Article  Google Scholar 

  • Baksh H, Buledi JA, Khand NH, Solangi AR, Mallah A, Sherazi ST, Abro MI (2020) Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatshefte Für Chemie-Chemical Monthly 151:1–8

    Google Scholar 

  • Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical Methods 2(482):580–632

    Google Scholar 

  • Batley G, Afgan B (1981) Voltammetric analysis of some carbamate pesticides. J Electroanal Chem Interfacial Electrochem 125(2):437–445

    CAS  Google Scholar 

  • Bruzzoniti MC, De Carlo RM, Rivoira L, Del Bubba M, Pavani M, Riatti M, Onida B (2016) Adsorption of bentazone herbicide onto mesoporous silica: application to environmental water purification. Environ Sci Pollut Res 23(6):5399–5409

    CAS  Google Scholar 

  • Buledi JA, Ameen S, Khand NH, Solangi AR, Taqvi IH, Agheem MH, Wajdan Z (2020a) CuO nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid. Electroanalysis. https://doi.org/10.1002/elan.202000083

    Article  Google Scholar 

  • Buledi JA, Amin S, Haider SI, Bhanger MI, Solangi AR (2020b) A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07865-7

    Article  Google Scholar 

  • Buledi JA, Zia-ul-Hassan S, Arfana M, Amber R (2020c) Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr Anal Chem 16(1):1–4

    Google Scholar 

  • Cerejeira RP, Delerue-Matos C, Vaz CM (2002) Development of an FIA system with amperometric detection for determination of bentazone in estuarine waters. Anal Bioanal Chem 373(4–5):295–298

    CAS  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MR, Machado SA (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135(3):873–879

    CAS  Google Scholar 

  • Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42(12):5425–5438

    CAS  Google Scholar 

  • Cheng C, Liu H, Xue X, Cao H, Shi L (2014) Highly dispersed copper nanoparticle modified nano Li4Ti5O12 with high rate performance for lithium ion battery. Electrochim Acta 120:226–230

    CAS  Google Scholar 

  • de Melo Abreu S, Alves A, Oliveira B, Herbert P (2005) Determination of ethyl carbamate in alcoholic beverages: an interlaboratory study to compare HPLC-FLD with GC-MS methods. Anal Bioanal Chem 382(2):498–503

    Google Scholar 

  • Eitzer BD, Hammack W, Filigenzi M (2014) Interlaboratory comparison of a general method to screen foods for pesticides using QuEChERs extraction with high performance liquid chromatography and high resolution mass spectrometry. J Agric Food Chem 62(1):80–87

    CAS  Google Scholar 

  • Fal J, Barylyak A, Besaha K, Bobitski YV, Cholewa M, Zawlik I, Cebulski J (2016) Experimental investigation of electrical conductivity and permittivity of SC-TiO 2-EG nanofluids. Nanoscale Res Lett 11(1):1–9

    CAS  Google Scholar 

  • Fuku X, Matinise N, Masikini M, Kasinathan K, Maaza M (2018) An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: use in photo-catalytic applications. Mater Res Bull 97:457–465

    CAS  Google Scholar 

  • Geto A, Noori JS, Mortensen J, Svendsen WE, Dimaki M (2019) Electrochemical determination of bentazone using simple screen-printed carbon electrodes. Environ Int 129:400–407

    CAS  Google Scholar 

  • Hamilton D, Ambrus A, Dieterle R, Felsot A, Harris C, Holland P, Unsworth J (2003) Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure Appl Chem 75(8):1123–1155

    CAS  Google Scholar 

  • Harrison JP, Ojeda JJ, Romero-González ME (2012) The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ 416:455–463

    CAS  Google Scholar 

  • Hashemi P, Karimian N, Khoshsafar H, Arduini F, Mesri M, Afkhami A, Bagheri H (2019) Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: application to the determination of carbaryl and fenamiphos pesticides. Mater Sci Eng C 102:764–772

    CAS  Google Scholar 

  • Jadhav S, Gaikwad S, Nimse M, Rajbhoj A (2011) Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J Cluster Sci 22(2):121–129

    CAS  Google Scholar 

  • Jekel H (2005) Sustainable water management in Europe—the water framework directive transboundary water resources: strategies for regional security and ecological stability. Springer, USA, pp 121–127

    Google Scholar 

  • Jevtić S, Stefanović A, Stanković DM, Pergal MV, Ivanović AT, Jokić A, Petković BB (2018) Boron-doped diamond electrode—a prestigious unmodified carbon electrode for simple and fast determination of bentazone in river water samples. Diam Relat Mater 81:133–137

    Google Scholar 

  • Ji W-l, Liu Y-M, Ma Y-J (2009) Determination of bentazone and 2, 4-D in dringking water using high performance liquid chromatography-tandem mass spectrometry. Chin J Health Lab Technol 12:112–123

  • Kaviyarasu K, Manikandan E, Maaza M (2015) Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J Alloy Compd 648:559–563

    CAS  Google Scholar 

  • Khairy M, Ayoub HA, Banks CE (2018) Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 255:104–111

    CAS  Google Scholar 

  • Khand NH, Palabiyik IM, Buledi JA, Ameen S, Memon AF, Ghumro T, Solangi AR (2021) Functional Co 3 O 4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. J Nanostruct Chem. https://doi.org/10.1007/s40097-020-00380-8

    Article  Google Scholar 

  • Lavanya N, Claude JN, Sekar C (2018) Electrochemical determination of purine and pyrimidine bases using copper doped cerium oxide nanoparticles. J Colloid Interface Sci 530:202–211

    CAS  Google Scholar 

  • Li N, Chen J, Shi Y-P (2015) Magnetic graphene solid-phase extraction for the determination of carbamate pesticides in tomatoes coupled with high performance liquid chromatography. Talanta 141:212–219

    CAS  Google Scholar 

  • Liem M, Barber C, Markwalder N, Killias M, Nieuwbeerta P (2011) Homicide–suicide and other violent deaths: An international comparison. Forensic Sci Int 207(1–3):70–76

    Google Scholar 

  • Liu J, Xu Y, Zhao G, a. (2012) Rapid determination of ethyl carbamate in Chinese rice wine using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Inst Brew 118(2):217–222

    CAS  Google Scholar 

  • Luna IZ, Commission BAE (2015) Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Open Access Libr J 2(03):1

    Google Scholar 

  • Martín Reina J, Duarte J, Cerrillos L, Bautista Palomas JD, Moreno Navarro IM (2017). Insecticide reproductive toxicity profile: organophosphate, carbamate and pyrethroids.

  • Memon SA, Hassan D, Buledi JA, Solangi AR, Memon SQ, Palabiyik IM (2020) Plant material protected cobalt oxide nanoparticles: sensitive electro-catalyst for tramadol detection. Microchem J 159:105480

    CAS  Google Scholar 

  • Mir NA, Haque M, Khan A, Muneer M, Vijayalakshmi S (2014) Photocatalytic degradation of herbicide Bentazone in aqueous suspension of TiO2: mineralization, identification of intermediates and reaction pathways. Environ Technol 35(4):407–415

    CAS  Google Scholar 

  • Pato AH, Balouch A, Talpur FN, Panah P, Mahar AM, Jagirani MS, Sanam S (2020) Fabrication of TiO 2@ ITO-grown nanocatalyst as efficient applicant for catalytic reduction of Eosin Y from aqueous media. Environ Sci Poll Res. https://doi.org/10.1007/s11356-020-10548-y

    Article  Google Scholar 

  • Peng S, Xiao J, Cheng J, Zhang M, Li X, Cheng M (2012) Ionic liquid magnetic bar microextraction and HPLC determination of carbamate pesticides in real water samples. Microchim Acta 179(3–4):193–199

    CAS  Google Scholar 

  • Porini JA, Escandar GM (2011) Spectrofluorimetric study of the herbicide bentazone in organized media: analytical applications. Anal Methods 3(7):1494–1500

    CAS  Google Scholar 

  • Qi P, Wang J, Wang X, Wang Z, Xu H, Di S, Wang X (2018) Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs. RSC Adv 8(45):25334–25341

    CAS  Google Scholar 

  • Rahemi V, Garrido J, Borges F, Brett C, Garrido E (2013) Electrochemical determination of the herbicide bentazone using a carbon nanotube β-Cyclodextrin modified electrode. Electroanalysis 25(10):2360–2366

    CAS  Google Scholar 

  • Rao TN, Loo B, Sarada B, Terashima C, Fujishima A (2002) Electrochemical detection of carbamate pesticides at conductive diamond electrodes. Anal Chem 74(7):1578–1583

    CAS  Google Scholar 

  • Rathnakumar SS, Noluthando K, Kulandaiswamy AJ, Rayappan JBB, Kasinathan K, Kennedy J, Maaza M (2019) Stalling behaviour of chloride ions: a non-enzymatic electrochemical detection of α-Endosulfan using CuO interface. Sens Actuators, B Chem 293:100–106

    CAS  Google Scholar 

  • Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138(5):1395–1404

    CAS  Google Scholar 

  • Song X-Y, Shi Y-P, Chen J (2013) Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples. Food Chem 139(1–4):246–252

    CAS  Google Scholar 

  • Soriano JM, Jiménez B, Font G, Moltó JC (2001) Analysis of carbamate pesticides and their metabolites in water by solid phase extraction and liquid chromatography: a review. Crit Rev Anal Chem 31(1):19–52

    CAS  Google Scholar 

  • Tharini J, Chen T-W, Chen S-M, Saraswathi R, Elshikh MS, Darwish NM, Rwei S-P (2019b) A mexacarbate electrochemical biosensor on carbon materials based on a functionalized multiwalled carbon nanotube modified glassy carbon electrode. Int J Electrochem Sci 14(8):8311–8325

    CAS  Google Scholar 

  • Tharini J, Chen T-W, Chen S-M, Saraswathi R, Elshikh MS, Darwish NM, Rwei S-P (2019a) A mexacarbate electrochemical biosensor on carbon materials based on a functionalized multiwalled carbon nanotube modified glassy carbon electrode. Int J Electrochem Sci 14:8311–8325

    CAS  Google Scholar 

  • Tran K, Eide D, Nickols SM, Cromer MR, Sabaa-Srur A, Smith RE (2012) Finding of pesticides in fashionable fruit juices by LC–MS/MS and GC–MS/MS. Food Chem 134(4):2398–2405

    CAS  Google Scholar 

  • Viswanathan S, Manisankar P (2015) Nanomaterials for electrochemical sensing and decontamination of pesticides. J Nanosci Nanotechnol 15(9):6914–6923

    CAS  Google Scholar 

  • Wang Z, Chang Q, Kang J, Cao Y, Ge N, Fan C, Pang G-F (2015) Screening and identification strategy for 317 pesticides in fruits and vegetables by liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry. Anal Methods 7(15):6385–6402

    CAS  Google Scholar 

  • Wang X, Ge C-Y, Chen K, Zhang YX (2018) An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim Acta 259:225–232

    CAS  Google Scholar 

  • Yang P, Wang X, Ge C-Y, Fu X, Liu XY, Chai H, Chen K (2019) Fabrication of CuO nanosheets-built microtubes via Kirkendall effect for non-enzymatic glucose sensor. Appl Surf Sci 494:484–491

    CAS  Google Scholar 

  • Zhang YX, Huang M, Li F, Wen ZQ (2013) Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int j Electrochem Sci 8(6):8645–8661

    CAS  Google Scholar 

  • Zhao L, Lee HK (2001) Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water. J Chromatogr A 919(2):381–388

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Higher Education Commission of Pakistan for providing funds under the project “6714/Sindh/NRPU/R&D/HEC/HEC/2015”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber R. Solangi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buledi, J.A., Buledi, P.A., Batool, M. et al. Exploring electrocatalytic proficiencies of CuO nanostructure for simultaneous determination of bentazone and mexacarbate pesticides. Appl Nanosci 11, 1889–1902 (2021). https://doi.org/10.1007/s13204-021-01864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01864-x

Keywords

Navigation