Skip to main content
Log in

Target location detection of mobile robots based on R-FCN deep convolutional neural network

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In order to improve the target location detection effect of mobile robots, this paper combines convolutional neural network and recurrent neural network to construct a model for solving abnormal sound event detection. Moreover, this paper constructs a convolutional neural network architecture suitable for feature extraction of audio signals, uses the recurrent neural network to classify each frame of audio signals, and applies the improved R-FCN deep convolutional neural network to the target location detection of mobile robots. In addition, this article uses Matlab to carry out system simulation construction, and design and use the system to carry out performance verification. Through experimental research, it can be seen that the target location system of mobile robot based on R-FCN deep convolutional neural network constructed in this paper can effectively improve the location speed and location accuracy compared with traditional location systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ayari A, Bouamama S (2017) A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization[J]. Robot Biomimet 4(1):1–15

    Google Scholar 

  • Balabonski T, Delga A, Rieg L et al (2019) Synchronous gathering without multiplicity detection: a certified algorithm[J]. Theory Comput Syst 63(2):200–218

    Article  MathSciNet  MATH  Google Scholar 

  • Carius J, Wermelinger M, Rajasekaran B et al (2018) Deployment of an autonomous mobile manipulator at MBZIRC[J]. J Field Robot 35(8):1342–1357

    Article  Google Scholar 

  • Cheng TCE, Kriheli B, Levner E et al (2021) Scheduling an autonomous robot searching for hidden targets[J]. Ann Oper Res 298(1):95–109

    Article  MathSciNet  MATH  Google Scholar 

  • Cherni F, Rekik C, Derbel N (2019) Mobile robot navigation based on tangent circle algorithm[J]. Int J Comput Appl Technol 59(1):31–42

    Article  Google Scholar 

  • Dames P, Tokekar P, Kumar V (2017) Detecting, localizing, and tracking an unknown number of moving targets using a team of mobile robots[J]. Int J Robot Res 36(13–14):1540–1553

    Article  Google Scholar 

  • El Shenawy A, Mohamed K, Harb H (2020) HDec-POSMDPs MRS exploration and fire searching based on IoT cloud robotics[J]. Int J Autom Comput 17(3):364–377

    Article  Google Scholar 

  • Gao Y, Chen H, Li Y et al (2017) Autonomous Wi-Fi relay placement with mobile robots[J]. IEEE/ASME Trans Mechatron 22(6):2532–2542

    Article  Google Scholar 

  • Golan Y, Edelman S, Shapiro A et al (2017) Online robot navigation using continuously updated artificial temperature gradients[J]. IEEE Robot Autom Lett 2(3):1280–1287

    Article  Google Scholar 

  • Goldhoorn A, Garrell A, Alquézar R et al (2018) Searching and tracking people with cooperative mobile robots[J]. Auton Robot 42(4):739–759

    Article  Google Scholar 

  • Hacene N, Mendil B (2019) Fuzzy behavior-based control of three wheeled omnidirectional mobile robot[J]. Int J Autom Comput 16(2):163–185

    Article  Google Scholar 

  • Hu J, Niu H, Carrasco J et al (2020) Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning[J]. IEEE Trans Veh Technol 69(12):14413–14423

    Article  Google Scholar 

  • Karakaya S, Kucukyildiz G, Ocak H (2017) A new mobile robot toolbox for MATLAB[J]. J Intell Rob Syst 87(1):125–140

    Article  Google Scholar 

  • Muthukumaran S, Sivaramakrishnan R (2019) Optimal path planning for an autonomous mobile robot using dragonfly algorithm[J]. Int J Simul Modell 18(3):397–407

    Article  Google Scholar 

  • Palmieri N, Yang XS, De Rango F et al (2019) Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption[J]. Neural Comput Appl 31(1):263–286

    Article  Google Scholar 

  • Rostami SMH, Sangaiah AK, Wang J et al (2019) Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J]. EURASIP J Wirel Commun Netw 2019(1):1–19

    Article  Google Scholar 

  • Sombolestan SM, Rasooli A, Khodaygan S (2019) Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning[J]. J Ambient Intell Humaniz Comput 10(5):1841–1850

    Article  Google Scholar 

  • Unhelkar VV, Dörr S, Bubeck A et al (2018) Mobile robots for moving-floor assembly lines: design, evaluation, and deployment[J]. IEEE Robot Autom Mag 25(2):72–81

    Article  Google Scholar 

  • Victerpaul P, Saravanan D, Janakiraman S et al (2017) Path planning of autonomous mobile robots: a survey and comparison[J]. J Adv Res Dyn Control Syst 9(12):1535–1565

    Google Scholar 

  • Zhang M, Liu X, Xu D et al (2019) Vision-based target-following guider for mobile robot[J]. IEEE Trans Industr Electron 66(12):9360–9371

    Article  Google Scholar 

  • Zhao R, Lee HK (2017) Fuzzy-based path planning for multiple mobile robots in unknown dynamic environment[J]. J Elect Eng Technol 12(2):918–925

    Article  Google Scholar 

Download references

Funding

The research is supported by: the 2018 Guangxi Vocational Education Professional Development Research Project "Development Research Base of Industrial Robotics and Intelligent Manufacturing Technology Professional Group" (No.2018080315); 2019 Guangxi University young and middle-aged teachers' research basic capacity improvement project "Research on unmanned AGV distribution system for non-ferrous metal melting and casting section" (No. 2019KY1572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Cen.

Ethics declarations

Conflict of interest

The author declared that they have no conflicts of interest to this work. I declare that I do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, H. Target location detection of mobile robots based on R-FCN deep convolutional neural network. Int J Syst Assur Eng Manag 14, 728–737 (2023). https://doi.org/10.1007/s13198-021-01514-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01514-z

Keywords

Navigation