Skip to main content
Log in

Monitoring the heat-induced structural changes of alkaline phosphatase by molecular modeling, fluorescence spectroscopy and inactivation kinetics investigations

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The heat induced conformational changes of calf alkaline phosphatase (ALP) were analyzed using different methods, based on fluorescence spectroscopy, molecular modeling and inactivation studies. Experimental studies were conducted in buffer solution in the temperature range between 25 and 70 °C. Molecular dynamic (MD) simulation provided details on thermally induced changes in ALP structure, highlighting that heating favored the hydrophobic exposure and important alteration of the catalytic site above 60 °C. Additional information to MD data were obtained by using different fluorescence spectroscopy methods, which revealed a complex mechanism of thermal denaturation. Therefore, the emissive properties indicated an unfolding of ALP at temperatures below 60 °C, whereas at higher temperatures, the polypeptides chains fold leading to a higher exposure of Trp residues. In order to establish a structure-function relationship, the results were correlated with inactivation studies of ALP in buffer at pH 9.0. The inactivation data were fitted using a first-order kinetic model, resulting in an activation energy value of 207.26 ± 21.68 kJ · mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT (2006) Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J Lumin 121:179–186

    Article  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Castro I, Macedo B, Teixeira JA, Vicente AA (2004) The effect of electric field on important food-processing enzymes: comparison of inactivation kinetics under conventional and ohmic heating. J Food Sci 69:696–701

    Article  Google Scholar 

  • Chadborn N, Bryant J, Bain AJ, O’Shea P (1999) Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching. Biophys J 76:2198–2207

    Article  CAS  Google Scholar 

  • Claeys W, van Loey A, Hendricks M (2002) Kinetics of alkaline phosphatase and lactoperoxidase inactivation, and of β-lactoglobulin denaturation in milk with different fat content. J Dairy Res 69:541–553

    Article  CAS  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29(31):7133–7155

    Article  CAS  Google Scholar 

  • Dumitraşcu, L (2012) Intrinsic indicators for evaluation of heat treatment applied in dairy industry. PhD Thesis, University Dunărea de Jos of Galati, Galati, România

  • Dumitraşcu L, Moschopoulou E, Aprodu I, Stanciu S, Râpeanu G, Stănciuc N (2013) Assessing the heat induced changes in major cow and non-cow whey proteins conformation on kinetic and thermodynamic basis. Small Rumin Res 111:129–138

    Article  Google Scholar 

  • Ehteshami M, Rasoulzadeh F, Mahboob S, Rashidi MR (2013) Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and ruti. J Lumin 135:164–169

    Article  CAS  Google Scholar 

  • Fadiloğlu S, Erkmen O, Şekeroğlu G (2005) Thermal inactivation kinetics of alkaline phosphatase in buffer and milk. J Food Process Pres 30(3):258–268

    Article  Google Scholar 

  • Fox PF, Kelly AL (2006) Indigenous enzymes in milk: overview and historical aspects—Part 2. Int Dairy J 16:517–532

    Article  CAS  Google Scholar 

  • Gonzalez-Horta A, Gonzalez Hernandez B, Chavez-Montes A (2013) Fluorescence as a tool to study lipid-protein interactions: the case of α-synuclein. Open J Biophys 3:112–119

    Article  Google Scholar 

  • Hung HC, Chang GG (2001) Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation. Biophys J 81:3456–3471

    Article  CAS  Google Scholar 

  • Knight AH, Fryer SM (1989) The development of heat-resistant phosphatase activity in raw milk. Int J Dairy Technol 42:81–86

    Article  CAS  Google Scholar 

  • Kuznetsova M, Turoverov KK, Uversky VN (2004) Use of the phase diagram method to analyze the protein unfolding-refolding reactions: fishing out the “invisible” intermediates. J Proteome Res 3:485–494

    Article  CAS  Google Scholar 

  • Laskowski RA (2009) PDB sum new things. Nucleic Acids Res 37:D355–D359

    Article  CAS  Google Scholar 

  • Le Du MH, Stigbrand T, Taussig MJ, Menez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. Implication for a substrate specificity. J Biol Chem 276(12):9158–9165

    Article  Google Scholar 

  • Lewis PN, Momany FA, Scheraga HA (1973) Chain reversals in proteins. Biochim Biophys Acta 303:211–229

    Article  CAS  Google Scholar 

  • Liu J, Campos LA, Cerminara M, Wang X, Ramanathan R, English DS, Muñoz V (2011) Exploring one-state downhill protein folding in single molecules. Proc Natl Acad Sci U S A 109:179–184

    Article  Google Scholar 

  • Liu S, Pang S, Na W, Su X (2014) Near-infrared fluorescence probe for the determination of alkaline phosphatase. Biosens Bioelectron 55:249–254

    Article  CAS  Google Scholar 

  • Marchand S, Merchiers M, Messens W, Coudijzer K, De Block J (2009) Thermal inactivation kinetics of alkaline phosphatase in equine milk. Int Dairy J 19:763–767

    Article  CAS  Google Scholar 

  • Mersol JV, Steel DG, Gafni A (1991) Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit. Biochemistry 30:668–675

    Article  CAS  Google Scholar 

  • Michio S, Satoshi K, Tohru Y, Koreaki I (1997) Roles of disulfide bond in bacterial alkaline phosphatase. J Biol Chem 272:6174–6178

    Article  Google Scholar 

  • Munishkina LA, Fink LA (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768:1862–1885

    Article  CAS  Google Scholar 

  • Paul BK, Guchhait N (2011) A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochem Photobiol Sci 10:980–991

    Article  CAS  Google Scholar 

  • Rankin SA, Christiansen A, Lee W, Banavara DS, Lopez-Hernandez A (2010) The application of alkaline phosphatase assays for the validation of milk product pasteurization. J Dairy Sci 93:5538–5551

    Article  CAS  Google Scholar 

  • Royer AC (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784

    Article  CAS  Google Scholar 

  • Stănciuc N, Ardelean AI, Diaconu V, Râpeanu G, Stanciu S, Nicolau A (2011) Kinetic and thermodynamic parameters of alkaline phosphatase and γ–glutamyl transferase inactivation in bovine milk. Dairy Sci Technol 91:701–717

    Article  Google Scholar 

  • Stănciuc N, Aprodu I, Râpeanu G, Bahrim G (2012) Fluorescence spectroscopy and molecular modeling investigations on the thermally induced structural changes of bovine β-lactoglobulin. Innov Food Sci Emerg 15:50–56

    Article  Google Scholar 

  • Wang JZ, Lee J, Sia YX, Wang W, Yang JM, Yin SJ, Qian GY, Park YD (2014) A folding study of Antarctic krill (Euphausia superba) alkaline phosphatase using denaturants. Int J Biol Macromol 70:266–274

    Article  CAS  Google Scholar 

  • Wilińska A, Bryjak J, Illeová V, Polakovič M (2007) Kinetics of thermal inactivation of alkaline phosphatase in bovine and caprine milk and buffer. Int Dairy J 17:579–586

    Article  Google Scholar 

  • Zalatan JG, Fenn TD, Herschlag D (2008) Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. J Mol Biol 384:1174–1189

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Stănciuc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumitrașcu, L., Stănciuc, N., Aprodu, I. et al. Monitoring the heat-induced structural changes of alkaline phosphatase by molecular modeling, fluorescence spectroscopy and inactivation kinetics investigations. J Food Sci Technol 52, 6290–6300 (2015). https://doi.org/10.1007/s13197-015-1719-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1719-1

Keywords

Navigation