Skip to main content
Log in

Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Cytochrome P450 (CYP450) inhibition by the bioactive molecules of dietary supplements or herbal products leading to greater potential for toxicity of co-administered drugs. The present study was aimed to compare the inhibitory potential of selected common dietary bioactive molecules (Gallic acid, Ellagic acid, β-Sitosterol, Stigmasterol, Quercetin and Rutin) on CYP3A4 and CYP2D6 to assess safety through its inhibitory potency and to predict interaction potential with co-administered drugs. CYP450-CO complex assay was carried out for all the selected dietary bioactive molecules in isolated rat microsomes. CYP450 concentration of the rat liver microsome was found to be 0.474 nmol/mg protein, quercetin in DMSO has shown maximum inhibition on CYP450 (51.02 ± 1.24 %) but less when compared with positive control (79.02 ± 1.61 %). In high throughput fluorometric assay, IC50 value of quercetin (49.08 ± 1.02–54.36 ± 0.85 μg/ml) and gallic acid (78.46 ± 1.32–83.84 ± 1.06 μg/ml) was lower than other bioactive compounds on CYP3A4 and CYP2D6 respectively but it was higher than positive controls (06.28 ± 1.76–07.74 ± 1.32 μg/ml). In comparison of in vitro inhibitory potential on CYP3A4 and CYP2D6, consumption of food or herbal or dietary supplements containing quercetin and gallic acid without any limitation should be carefully considered when narrow therapeutic drugs are administered together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benet LZ, Wacher VJ (2000) Use of gallic acid esters to increase bioavailability of orally administered pharmaceutical compounds. Patents, Google

    Google Scholar 

  • Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51(2):161–170. doi:10.1002/mnfr.200600164

    Article  CAS  Google Scholar 

  • Choi JS, Piao YJ, Kang KW (2011) Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res 34(4):607–613. doi:10.1007/s12272-011-0411-x

    Article  CAS  Google Scholar 

  • Conquer JA, Maiani G, Azzini E, Raguzzini A, Holub BJ (1998) Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 128(3):593–597

    CAS  Google Scholar 

  • Deschner EE, Ruperto JF, Wong GY, Newmark HL (1993) The effect of dietary quercetin and rutin on AOM-induced acute colonic epithelial abnormalities in mice fed a high-fat diet. Nutr Cancer 20(3):199–204. doi:10.1080/01635589309514287

    Article  CAS  Google Scholar 

  • Erlund I, Kosonen T, Alfthan G, Maenpaa J, Perttunen K, Kenraali J, Parantainen J, Aro A (2000) Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol 56(8):545–553

    Article  CAS  Google Scholar 

  • Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA, Aro A (2002) Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur J Clin Nutr 56(9):891–898

    Article  CAS  Google Scholar 

  • Gubler H, Schopfer U, Jacoby E (2013) Theoretical and experimental relationships between percent inhibition and IC50 data observed in high-throughput screening. J Biomol Screen 18(1):1–13. doi:10.1177/1087057112455219

    Article  CAS  Google Scholar 

  • Ho PC, Saville DJ, Wanwimolruk S (2001) Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J Pharm& Pharm Sci: Publof the Can Soc Pharm Sci, Societe canadienne des sciences pharmaceutiques 4(3):217–227

    CAS  Google Scholar 

  • Hodek P, Trefil P, Stiborova M (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 139(1):1–21

    Article  CAS  Google Scholar 

  • Hsu PW, Shia CS, Lin SP, Chao PD, Juang SH, Hou YC (2013) Potential risk of mulberry-drug interaction: modulation on P-glycoprotein and cytochrome P450 3A. J Agric Food Chem 61(18):4464–4469

    Article  CAS  Google Scholar 

  • Huang SM, Hall SD, Watkins P, Love LA, Serabjit-Singh C, Betz JM, Hoffman FA, Honig P, Coates PM, Bull J, Chen ST, Kearns GL, Murray MD (2004) Drug interactions with herbal products and grapefruit juice: a conference report. Clin Pharmacol Ther 75(1):1–12. doi:10.1016/j.clpt.2003.07.002

    Article  Google Scholar 

  • Ilango K, Vijayakumar TM, Agrawal A, Dubey GP (2013) Pharmacogenetic comprised prospect on cytochrome P450 facilitated drug interactions. J Bionanoscience 7(2):127–139. doi:10.1166/jbns.2013.1106

    Article  CAS  Google Scholar 

  • Jones PJ, AbuMweis SS (2009) Phytosterols as functional food ingredients: linkages to cardiovascular disease and cancer. Curr Opin Clin Nutr and metabolic care 12(2):147–151

    Article  CAS  Google Scholar 

  • Kim YS, Zerin T, Song HY (2013) Antioxidant action of ellagic acid ameliorates paraquat-induced A549 cytotoxicity. Biol Pharm Bull 36(4):609–615

    Article  CAS  Google Scholar 

  • Li X, Choi JS (2009) Effects of quercetin on the pharmacokinetics of etoposide after oral or intravenous administration of etoposide in rats. Anticancer Res 29(4):1411–1415

    CAS  Google Scholar 

  • Manach C, Morand C, Demigné C, Texier O, Régérat F, Rémésy C (1997) Bioavailability of rutin and quercetin in rats. FEBS Lett 409(1):12–16. doi:10.1016/S0014-5793(97)00467-5

    Article  CAS  Google Scholar 

  • Mansouri MT, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A (2014) A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav 117(0):40–46. doi:10.1016/j.pbb.2013.12.011

    Article  CAS  Google Scholar 

  • Muti P, Awad AB, Schunemann H, Fink CS, Hovey K, Freudenheim JL, Wu YW, Bellati C, Pala V, Berrino F (2003) A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. J Nutr 133(12):4252–4255

    CAS  Google Scholar 

  • Noroozi M, Burns J, Crozier A, Kelly IE, Lean ME (2005) Prediction of dietary flavonol consumption from fasting plasma concentration or urinary excretion. Eur J Clin Nutr 54(2):143–149

    Article  Google Scholar 

  • Pandit S, Ponnusankar S, Bandyopadhyay A, Ota S, Mukherjee PK (2011) Exploring the possible metabolism mediated interaction of glycyrrhiza glabra extract with CYP3A4 and CYP2D6. Phytother Res 25(10):1429–1434

    Article  CAS  Google Scholar 

  • Ponnusankar S, Pandit S, Babu R, Bandyopadhyay A, Mukherjee PK (2011) Cytochrome P450 inhibitory potential of triphala–a rasayana from ayurveda. J Ethnopharmacol 133(1):120–125. doi:10.1016/j.jep.2010.09.022

    Article  CAS  Google Scholar 

  • Schroder-Aasen T, Molden G, Nilsen OG (2012) In vitro inhibition of CYP3A4 by the multiherbal commercial product sambucus force and its main constituents Echinacea purpurea and sambucus nigra. Phytother Res: PTR 26(11):1606–1613. doi:10.1002/ptr.4619

    Article  Google Scholar 

  • Stresser DM, Blanchard AP, Turner SD, Erve JC, Dandeneau AA, Miller VP, Crespi CL (2000) Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos: Biol Fate of Chem 28(12):1440–1448

    CAS  Google Scholar 

  • Subehan UT, Iwata H, Kadota S, Tezuka Y (2006) Mechanism-based inhibition of CYP3A4 and CYP2D6 by Indonesian medicinal plants. J Ethnopharmacol 105(3):449–455. doi:10.1016/j.jep.2005.12.001

    Article  CAS  Google Scholar 

  • Tang JC, Yang H, Song XY, Song XH, Yan SL, Shao JQ, Zhang TL, Zhang JN (2009) Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother Res: PTR 23(2):159–164. doi:10.1002/ptr.2572

    Article  CAS  Google Scholar 

  • Usia T, Watabe T, Kadota S, Tezuka Y (2005) Cytochrome P450 2D6 (CYP2D6) inhibitory constituents of Catharanthus roseus. Biol Pharm Bull 28(6):1021–1024

    Article  CAS  Google Scholar 

  • Zou L, Harkey MR, Henderson GL (2002) Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci 71(13):1579–1589

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Department of Science and Technology, Government of India (Grant number: VI-D&P/372/10-11/TDT) for their financial assistance and support. One of the author Mr. T.M. Vijayakumar thank Mrs Kasthuri Bai. N and Mr. Vasanth. K from the ISISM Department for their support throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliappan Ilango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, T.M., Kumar, R.M., Agrawal, A. et al. Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening. J Food Sci Technol 52, 4537–4543 (2015). https://doi.org/10.1007/s13197-014-1472-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1472-x

Keywords

Navigation