Skip to main content

Advertisement

Log in

Combining Local Search into Genetic Algorithm for Bus Schedule Coordination through Small Timetable Modifications

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

Synchronizing bus arrival and departure times at transfer stations could reduce excess transfer times. This paper addresses the planning level of bus schedule coordination problem through small timetable modifications to given an initial timetable. Timetable modifications consist of shifts in initial departure times of vehicles from the depot. Headway-sensitive passenger demand is also considered in this problem. A nonlinear mixed integer-programming model is proposed for the problem to maximize the number of total transferring passengers with smalll excess transfer times. Based on the analysis of the proposed model, a genetic algorithm combining local search (GACLS) is designed to solve this model. Several numerical experiments are performed to show the utility and performance of GACLS. For small case, the proposed GACLS is highly effective, and can obtain the optimal solution with less time than enumeration method. For large real case, the GACLS also has good performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ceder, A.: Public Transit Planning and Operation: Theory, Modeling and Practice [M]. Elsevier, Oxford (2007)

    Book  Google Scholar 

  2. Desaulniers, G., Hickman, M.: Public transit. Handbooks Oper. Res. Manage. Sci. 69–120 (2007)

  3. Ibarra-Rojas, O.J., Giesen, R., Rios-Solis, Y.A.: An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating costs of transit networks. Transp. Res. B Methodol. 70, 35–46 (2014)

    Article  Google Scholar 

  4. Ibarra-Rojas, O.J., Delgado, F., Giesen, R., Muñoz, J.C.: Planning, operation, and control of bus transport systems: a literature review. Transp. Res. B Methodol. 77, 38–75 (2015)

    Article  Google Scholar 

  5. Petersen, H.L., Larsen, A., Madsen, O.B.G., Petersen, B., Ropke, S.: The simultaneous vehicle scheduling and passenger service problem. Transp. Sci. 47(4), 603–616 (2013)

    Article  Google Scholar 

  6. Ceder, A., Golany, B., Tal, O.: Creating bus timetables with maximal synchronization. Transp. Res. A Policy Pract. 35, 913–928 (2001)

    Article  Google Scholar 

  7. Ibarra-Rojas, O.J., Rios-Solis, Y.A.: Synchronization of bus timetabling. Transp. Res. B Methodol. 46(5), 599–614 (2012)

    Article  Google Scholar 

  8. Shafahi, Y., Khani, A.: A practical model for transfer optimization in a transit network: model formulations and solutions. Transp. Res. A Policy Pract. 44, 377–389 (2010)

    Article  Google Scholar 

  9. Cevallos, F., Zhao, F.: Minimizing transfer times in a public transit network with a genetic algorithm. Transp. Res. Rec. 1971(1), 74–79 (2006)

    Article  Google Scholar 

  10. Mollanejad, M., Aashtiani, H.Z., Rezaeestakhruie, H. (2011). Creating bus timetables with maximum synchronization. In: Proceedings of the 90th Annual Meeting, Transportation Research Board, Paper No. 11–4187, Washington, DC

  11. Parbo J., Nielsen O.A., Prato C.G.: User perspectives in public transport timetable optimisation. Transportation Research Part C: Emerging Technologies. 48, 269–284 (2014)

  12. Wu, J.J., Liu, M.H., et al.: Equity-based timetable synchronization optimization in urban subway network. Transport. Res. Part C. 51, 1–18 (2015a)

    Article  Google Scholar 

  13. Wu, Y.H., Tang, J.F., Yu, Y., Pan, Z.D.: A stochastic optimization model for transit network timetable design to mitigate the randomness of traveling time by adding slack time. Transport. Res. Part C. 52, 15–31 (2015b)

    Article  Google Scholar 

  14. Wu, Y.H., Yang, H., Tang, J.F., Yu, Y.: Multi-objective re-synchronizing of bus timetable: model, complexity and solution. Transport. Res. Part C. 67, 149–168 (2016a)

    Article  Google Scholar 

  15. Wu, W., Liu, R., Jin, W.: Designing robust schedule coordination scheme for transit networks with safety control margins. Transp. Res. B Methodol. 93, 495–519 (2016b)

    Article  Google Scholar 

  16. Wong, R.C.W., Yuen, T.W.Y., Fung, K.W., Leung, J.M.Y.: Optimizing timetable synchronization for rail mass transit. Transp. Sci. 42(1), 57–69 (2008)

    Article  Google Scholar 

  17. Niu, H.M., Tian, X.P., Zhou, X.S.: Demand-driven train schedule synchronization for high-speed rail lines. IEEE Trans. Intell. Transp. Syst. 16(5), 2642–2652 (2015)

    Article  Google Scholar 

  18. Wang, Y.H., Tang, T., et al.: Passenger-demands-oriented train scheduling for an urban rail transit network. Transport. Res. Part C. 60, 1–23 (2015)

    Article  Google Scholar 

  19. Kang, L.J., Zhu, X.N.: Strategic timetable scheduling for last trains in urban railway transit networks. Appl. Math. Model. 45, 209–225 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kang, L.J., Wu, J.J., et al.: A case study on the coordination of last trains for the Beijing subway network. Transp. Res. B Methodol. 72, 112–127 (2015a)

    Article  Google Scholar 

  21. Kang, L.J., Wu, J.J., et al.: A practical model for last train rescheduling with train delay in urban railway transit networks. Omega. 50, 29–42 (2015b)

    Article  Google Scholar 

  22. Kang, L.J., Zhu, X.N.: A simulated annealing algorithm for first train transfer problem in urban railway networks. Appl. Math. Model. 40(1), 419–435 (2016)

    Article  MathSciNet  Google Scholar 

  23. Guo, X., Wu, J.J., et al.: Timetable coordination of first trains in urban railway network: a case study of Beijing. Appl. Math. Model. 40(17-18), 8048–8066 (2016)

    Article  MathSciNet  Google Scholar 

  24. Guo, X., Sun, H.J., et al.: Multiperiod-based timetable optimization for metro transit networks. Transp. Res. B Methodol. 96, 46–67 (2017)

    Article  Google Scholar 

  25. Nesheli, M.M., Ceder, A.: A robust, tactic-based, real-time framework for public-transport transfer synchronization. Transp. Res. Part C. 60, 105–123 (2015)

    Article  Google Scholar 

  26. Beasley, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: part 1, fundamentals. Univ. Comput. 15, 58–69 (1993)

    Google Scholar 

  27. Reeves, C.R.: Genetic algorithms for the operation researcher. INFORMS J. Comput. 9, 231–250 (1997)

  28. Yu, Y., Tang, J.F., Sun, W., et al.: Combining local search into non-dominated sorting for multi-objective line-cell conversion problem. Int. J. Comput. Integr. Manuf. 26(4), 316–326 (2013)

    Article  Google Scholar 

  29. HaKLI, H., UGUZ, H.: A novel approach for automated land partitioning using genetic algorithm. Expert Syst. Appl. 82, 10–18 (2017)

    Article  Google Scholar 

  30. Chakroborty, P., Deb, K., Subrahmanyam, P.S.: Optimal scheduling of urban transit systems using genetic algorithms. J. Transp. Eng. 121(6), 544–553 (1995)

    Article  Google Scholar 

  31. Chakroborty, P., Deb, K., Porwal, H.: A genetic algorithm based procedure for optimal transit systems scheduling. In: Proceedings of the Fifth International Conference on Computers in Urban Planning and Urban Management, pp. 330–341. Mumbai, India (1997)

  32. Chakroborty, P., Deb, K., Sharma, R.K.: Optimal fleet size distribution and scheduling of urban transit systems using genetic algorithms. Transp. Plan. Technol. 24(3), 209–226 (2001)

    Article  Google Scholar 

  33. Chakroborty, P.: Genetic algorithms for optimal urban transit network design. Comput. Aided Civ. Inf. Eng. 18(3), 184–200 (2003)

    Article  Google Scholar 

  34. Nayeem, M.A., Rahman, M.K., Rahman, M.S.: Transit network design by genetic algorithm with elitism. Transport. Res. Part C. 46, 30–45 (2014)

    Article  Google Scholar 

  35. Yu, Y., Tang, J.F., Gong, J., et al.: Mathematical analysis and solutions for multi-objective line-cell conversion problem. Eur. J. Oper. Res. 236(2), 774–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by grants from the National Natural Science Foundation of China (No. 71601088) and Project funded by China Postdoctoral Science Foundation (No. 2017 M610287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y. Combining Local Search into Genetic Algorithm for Bus Schedule Coordination through Small Timetable Modifications. Int. J. ITS Res. 17, 102–113 (2019). https://doi.org/10.1007/s13177-018-0165-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-018-0165-7

Keywords

Navigation