Skip to main content
Log in

On Weighted Least Squares Estimators for Chirp Like Model

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

In this paper we have considered the chirp like model which has been recently introduced, and it has a very close resemblance with a chirp model. We consider the weighted least squares estimators of the parameters of a chirp like model in presence of an additive stationary error, and study their properties. It is observed that although the least squares method seems to be a natural choice to estimate the unknown parameters of a chirp like model, the least squares estimators are very sensitive to the outliers. It is observed that the weighted least squares estimators are quite robust in this respect. The weighted least squares estimators are consistent and they have the same rate of convergence as the least squares estimators. We have further extended the results in case of multicomponent chirp like model. Some simulations have been performed to show the effectiveness of the proposed method. In simulation studies, weighted least squares estimators have been compared with the least absolute deviation estimators which, in general, are known to work well in presence of outliers. One EEG data set has been analyzed and the results are quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Djuric, P.M., 1996. A model selection rule for sinusoids in white Gaussian noise. IEEE Transactions on Signal Processing, vol. 44(7), 1744–1751.

    Article  ADS  Google Scholar 

  • Grover, R. 2020, Frequency and frequency rate estimation of some non-stationary signal processing models, Ph.D. thesis, Indian Institute of Technology, Kanpur.

  • Grover, R., Kundu, D. and Mitra, A. (2021), “Asymptotic properties of least squares estimators and sequential least squares estimators of a chirp-like signal model parameters”, Circuits, Systems and Signal Processing, vol. 40, no. 11, 5421–5467.

    Article  Google Scholar 

  • Guillet de Chatellus, H., Romero Cortes, L., Schnebelin, C., Burla, M. and Azana, J. (2018), “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics”, Nature Communications, 9, Article No. 2438. https://doi.org/10.1038/s41467-018-04822-4.

  • Jennrich, R.I. (1969), “Asymptotic properties of the nonlinear least squares estimators”, Annals of Mathematical Statistics, vol. 40, 633 – 643.

    Article  MathSciNet  Google Scholar 

  • Klauder, J.R., Price, A.C., Darlington, S., Albersheim, W.J. (1960), “The theory and design of chirp radars”, The Bell System Technical Journals, vol. XXXIX, 745 – 808.

  • Kundu, D. and Grover, R. (2021), “On a chirp-like model and its parameter estimation using periodogram-type estimators”, Journal of Statistical Theory and Practice, vol.15, no. 2, Paper no. 37.

  • Lahiri, A., Kundu, D. and Mitra, A. (2014), “On least absolute deviation estimator of one dimensional chirp model”, Statistics, vol. 48, no. 2, 405 - 420.

    Article  MathSciNet  Google Scholar 

  • Lahiri, A., Kundu, D. and Mitra, A. (2015), “Estimating the parameters of multiple chirp signals", Journal of Multivariate Analysis, 139, 189–205.

    Article  MathSciNet  Google Scholar 

  • Lancaster, D. (1965), “Chirp, a new radar technique”, Electronics World, vol. 73, 42–53.

    Google Scholar 

  • Mangulis, V. (1965), Handbook of series for scientists and engineers, Academic Press, New York.

    Google Scholar 

  • Montgomery H.L. (1990), Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, American Mathematical Society, 196.

  • Prasad, A., Kundu, D and Mitra, A. (2008), “Sequential estimation of the sum of sinusoidal model parameters”, Journal of Statistical Planning and Inference, vol. 138, no. 5, 1297 – 1313.

    Article  MathSciNet  Google Scholar 

  • Schock, S.G. (2004a), “A method for estimating the physical and acoustic properties of the seabed using chirp sonar data”, IEEE Transactions on Oceanic Engineering., vol.29, 1200–1217.

    Article  ADS  Google Scholar 

  • Schock, S.G. (2004b), “Remote estimates of physical and acoustic sediment properties in the South China Sea using chirp sonar data and the Biot Model”, IEEE Transactions on Oceanic Engineering., vol.29, 1218–1230.

    Article  ADS  Google Scholar 

  • Vinogradov, I.M. (1954), “The method of trigonometrical sums in the theory of numbers”, Interscience, Translated from Russian. Revised and annotated by K.F. Roth and Anne Davenport. Reprint of the 1954 translation. Dover Publications,Inc., Mineola, NY, 2004.

    Google Scholar 

  • Wu, C.F.J.(1981), “Asymptotic theory of the nonlinear least squares estimation”, Annals of Statistics, vol. 9, 501–513.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two unknown reviewers for their constructive suggestions which have helped to improve the earlier drafts of the manuscript significantly.

Funding

Part of the work of the first author has been funded by the Science and Engineering Research Board, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu.

Ethics declarations

Conflict of Interests

The authors do not have any conflict of interets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Preliminaries

To establish the consistency and asymptotic normality of the WLSEs we need some trigonometric and number theoretic results and one famous number theoretic conjecture. We explicitly mention it here for easy reference.

Result A.1: If \(\alpha , \beta \in (0,\pi )\), and \(\alpha \ne \beta \), then the following results hold.

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N \cos (\alpha n)= & {} \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N \sin (\alpha n) = 0, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos ^2(\alpha n)= & {} \frac{1}{2 (k+1)}, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \sin ^2(\alpha n)= & {} \frac{1}{2 (k+1)}, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos (\alpha n) \sin (\alpha n)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \sin (\alpha n) \sin (\beta n)= & {} \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos (\alpha n) \cos (\beta n) \!=\! 0, \end{aligned}$$

where \(k = 0, 1, 2, \ldots \).

Proof

The proofs can be found in Mangulis (1965). \(\square \)

Result A.2: If \(\alpha , \beta \in (0,\pi )\), and \(\alpha \ne \beta \), then except for countable number of points, the following results hold.

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N \cos (\alpha n^2)= & {} \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N \sin (\alpha n^2) = 0, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos ^2(\alpha n^2)= & {} \frac{1}{2 (k+1)}, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \sin ^2(\alpha n^2)= & {} \frac{1}{2 (k+1)}, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos (\alpha n^2) \sin (\beta n^2)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \sin (\alpha n^2) \cos (\beta n)= & {} \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos (\alpha n^2) \sin (\beta n)\\= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \sin (\alpha n^2) \sin (\beta n)= & {} \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos (\alpha n^2) \cos (\beta n) \\= & {} 0. \end{aligned}$$

In addition if \(\alpha \ne \beta \), then for \(k = 0,1,2, \ldots \),

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \sin (\alpha n^2) \sin (\beta n^2)= & {} \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k \cos (\alpha n^2) \cos (\beta n^2)\\= & {} 0. \\ \end{aligned}$$

where \(k = 0, 1, 2, \ldots \).

Proof

The proofs can be obtained from Vinogradov ’s (1954) results. See Lahiri et al. (2015) for details.

The following well known number theoretic conjecture, see for example Montgomery (1990), can not be established formally. But extensive numerical experiments indicate that it holds true.

Conjecture A: If \(\alpha , \beta \in (0,\pi )\), then except for countable number of points, for \(k = 0,1,2, \ldots \),

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k \cos (\alpha n^2) \sin (\beta n^2)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k \cos (\alpha n^2) \sin (\beta n)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k \sin (\alpha n^2) \cos (\beta n)= & {} 0. \\ \end{aligned}$$

In addition if \(\alpha \ne \beta \), then for \(k = 0,1,2, \ldots \),

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k \cos (\alpha n^2) \cos (\beta n^2)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k \sin (\alpha n^2) \sin (\beta n^2)= & {} 0. \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k \sin (\alpha n^2) \sin (\beta ^2)= & {} 0, \end{aligned}$$

Appendix B: Proof of Theorem 1

We need the following lemmas to prove Theorem 1.

Lemma

B-1: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, then

$$ E \left| \sum _{n=1}^{N} w \left( \frac{n}{N} \right) w^2\left( \frac{n+1}{N} \right) w \left( \frac{n+2}{N} \right) e(n) e^2(n+1)e(n+2) \right| = O(N^{\frac{1}{2}}). $$

Proof

$$\begin{aligned}{} & {} E \left| \sum _{n=1}^{N} w \left( \frac{n}{N} \right) w^2\left( \frac{n+1}{N} \right) w \left( \frac{n+2}{N} \right) e(n) e^2(n+1)e(n+2) \right| \\{} & {} \quad \le \left[ E \left( \sum _{n=1}^{N} w \left( \frac{n}{N} \right) w^2\left( \frac{n+1}{N} \right) w \left( \frac{n+2}{N} \right) e(n) e^2(n+1)e(n+2) \right) ^2 \right] ^{\frac{1}{2}}\\{} & {} \quad = O(N^{\frac{1}{2}}). \end{aligned}$$

Similarly, it follows that

$$\begin{aligned}{} & {} E \left| \sum _{n=1}^{N} w \left( \frac{n}{N} \right) w \left( \frac{n+1}{N} \right) w \left( \frac{n+k}{N} \right) w \left( \frac{n+k+1}{N} \right) e(n) e(n+1) e(n+k) e(n+k+1) \right| \\{} & {} \quad = O(N^{\frac{1}{2}}), \end{aligned}$$

for some fixed k, where \(k = 2,3,\ldots \).

Lemma

B-2: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, then for arbitrary integers \(m,k \ge 1\),

$$ E \sup _\theta \left| \sum _{n=1}^N w \left( \frac{n}{N} \right) w \left( \frac{n+k}{N} \right) e(n) e(n+k) e^{i m \theta n} \right| = O(N^{\frac{3}{4}}). $$

Proof

$$\begin{aligned}{} & {} E \sup _\theta \left| \sum _{n=1}^N w \left( \frac{n}{N} \right) w \left( \frac{n+k}{N} \right) e(n) e(n+k) e^{i m \theta n} \right| \le \\{} & {} \left[ E \sup _\theta \left| \sum _{n=1}^N w \left( \frac{n}{N} \right) w \left( \frac{n+k}{N} \right) e(n) e(n+k) e^{i m \theta n} \right| ^2 \right] ^{\frac{1}{2}} = \\{} & {} \left[ E \sup _\theta \left( \sum _{n=1}^N w \left( \frac{n}{N} \right) w \left( \frac{n+k}{N} \right) e(n) e(n+k) e^{i m \theta n} \right) \right. \\{} & {} \hspace{1in}\left. \left( \sum _{n=1}^N w \left( \frac{n}{N} \right) w \left( \frac{n+k}{N} \right) e(n) e(n+k) e^{-i m \theta n} \right) \right] ^{\frac{1}{2}} \\\le & {} \left[ E \sum _{n=1}^N w^2 \left( \frac{n}{N} \right) w^2 \left( \frac{n+k}{N} \right) e^2(n) e^2 (n+k) + \right. \\{} & {} 2 E \left| \sum _{n=1}^{N-1}w \left( \frac{n}{N} \right) w \left( \frac{n+k}{N} \right) w \left( \frac{n+1}{N} \right) w \left( \frac{n+k+1}{N} \right) e(n) e(n+k) e(n+1) e(n+k+1) \right| + \\{} & {} \left. \ldots + 2E \left| w \left( \frac{1}{N} \right) w \left( \frac{1+k}{N} \right) w \left( 1 \right) w \left( \frac{N+k}{N} \right) e(1) e(1+k)e(N) e(N+k) \right| \right] ^{\frac{1}{2}} \\= & {} O(N + N.N^{\frac{1}{2}})^{\frac{1}{2}} = O(N^{\frac{3}{4}}). \end{aligned}$$

Lemma

B-3: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, then

$$ E \sup _{\beta } \left| \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{i \beta n^2}\right| ^2 = O(N^{\frac{7}{4}}). $$

Proof

$$\begin{aligned}{} & {} E \sup _{\beta } \left| \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{i \beta n^2}\right| ^2 = \\{} & {} E \sup _{\beta } \left( \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{i \beta n^2}\right) \left( \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{-i \beta n^2}\right) = O(N+N.N^{\frac{3}{4}})\\{} & {} \quad = O(N^{\frac{7}{4}}) \end{aligned}$$

Lemma

B-4: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, then

$$ E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{i \beta n^2} \right| \le O(N^{-\frac{1}{8}}). $$

Proof

$$ E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{i \beta n^2} \right| \le \left[ E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) e(n) e^{i \beta n^2} \right| ^2 \right] ^{\frac{1}{2}} = O(N^{-\frac{1}{8}}). $$

Lemma

B-5: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, and \(\{X(n)\}\) is same as defined in (4), then

$$ E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| \le O(N^{-\frac{1}{8}}). $$

Proof

$$\begin{aligned}{} & {} E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| = \\{} & {} E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N \sum _{k=-\infty }^{\infty } a(k) e(n-k) w \left( \frac{n}{N} \right) e^{i \beta n^2} \right| \le \\{} & {} \sum _{k=-\infty }^{\infty } |a(k)| \left[ E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N e(n-k) w \left( \frac{n}{N} \right) e^{i \beta n^2} \right| \right] = O(N^{-\frac{1}{8}}). \end{aligned}$$

Since \(\displaystyle E \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N e(n-k) w \left( \frac{n}{N} \right) e^{i \beta n^2} \right| \) is independent of k, the result follows from Lemma B-4.

Lemma

B-6: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, and \(\{X(n)\}\) is same as defined in (4), then

$$ \sup _{\beta } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| \longrightarrow 0, \ \ \ \ a.s. $$

Proof

Consider the sequence \(N^9\), then we obtain

$$ E \sup _{\beta } \left| \frac{1}{N^9} \sum _{n=1}^{N^9} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| \le O(N^{-\frac{9}{8}}). $$

Therefore, using Borel Cantelli lemma, it follows that

$$ \sup _{\beta } \left| \frac{1}{N^9} \sum _{n=1}^{N^9} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| \longrightarrow 0, \ \ \ \ a.s. $$

Now consider J, such that \(N^9 < J \le (N+1)^9\), then

$$\begin{aligned}\sup _{\beta } \sup _{N^9< J \le (N+1)^9} \left| \frac{1}{N^9} \sum _{n=1}^{N^9} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} - \frac{1}{J} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| = \\ \sup _{\beta } \sup _{N^9< J \le (N+1)^9} \left| \frac{1}{N^9} \sum _{n=1}^{N^9} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} - \frac{1}{N^9} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} + \right. \\ \left. \frac{1}{N^9} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} - \frac{1}{J} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| \le \\ \sup _{\beta } \sup _{N^9< J \le (N+1)^9} \left| \frac{1}{N^9} \sum _{n=1}^{N^9} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} - \frac{1}{N^9} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| + \\ \sup _{\beta } \sup _{N^9 < J \le (N+1)^9} \left| \frac{1}{N^9} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} - \frac{1}{J} \sum _{n=1}^{J} w \left( \frac{n}{N} \right) X(n) e^{i \beta n^2} \right| \le \\ \frac{K}{N^9} \sum _{n=N^9+1}^{(N+1)^9} |X(n)| + K \sum _{n=1}^{(N+1)^9} |X(n)| \left( \frac{1}{N^9} - \frac{1}{(N+1)^9} \right) \end{aligned}$$

Note that the mean squared error of the first term is of the order \(O \left( \frac{1}{N^{18}} \times ((N+1)^9-N^9)^2 \right) = O(N^{-2})\). Similarly, the mean squared error of the second term is of the order \(\displaystyle O \left( N^{18} \times \left( \frac{(N+1)^9 - N^9}{N^{18}} \right) ^2 \right) = O(N^{-2})\). Therefore, both the terms converge to zero almost surely.

Along the same line the following result follows.

Lemma

B-7: Let \(\{e(n)\}\) be a sequence of i.i.d. random variables with mean zero and finite fourth moment, w(t) satisfies Assumption 1, and \(\{X(n)\}\) is same as defined in (4), then

$$ \sup _{\alpha } \left| \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) e^{i \alpha n} \right| \longrightarrow 0, \ \ \ \ a.s. $$

Lemma

B-8: Let us denote

$$ S_c = \{{\varvec{\theta }}: {\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |{\varvec{\theta }}-{\varvec{\theta }}^0| \ge 6c\}. $$

If there exists a \(c > 0\),

$$\begin{aligned} \underline{\lim } \inf _{{\varvec{\theta }} \in S_c} \frac{1}{N} [Q(\varvec{\theta }) - Q(\varvec{\theta }^0)] > 0 \ \ \ \ a.s. \end{aligned}$$
(21)

then \(\widehat{\varvec{\theta }}\), the WLSE of \({\varvec{\theta }}^0\), is a strongly consistent estimator of \({\varvec{\theta }}^0\).

Proof

It follows using simple arguments by contradiction, exactly similar to the lemma by Wu (1981). \(\square \)

Proof of Theorem 1:

Let us denote

$$\begin{aligned} \mu (n;{\varvec{\theta }}) = A \cos (\alpha n) + B \sin (\alpha n) + C \cos (\beta n^2) + D \sin (\beta n^2). \end{aligned}$$
(22)

Consider

$$\begin{aligned}\frac{1}{N} [Q(\varvec{\theta }) - Q({\varvec{\theta }}^0)]= & {} \frac{1}{N} \left[ \sum _{n=1}^N w \left( \frac{n}{N} \right) (y(n) - \mu (n;{\varvec{\theta }}))^2 - \sum _{n=1}^N w \left( \frac{n}{N} \right) X^2(n) \right] \\= & {} \frac{1}{N} \left[ \sum _{n=1}^N w \left( \frac{n}{N} \right) (\mu (n;{\varvec{\theta }}^0) - \mu (n;{\varvec{\theta }}))^2 \right] \\{} & {} + \frac{2}{N} \left[ \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n)(\mu (n;{\varvec{\theta }}^0) - \mu (n;{\varvec{\theta }})) \right] \\{} & {} = f_1(\varvec{\theta }) + f_2(\varvec{\theta }). \end{aligned}$$

Here

$$\begin{aligned}{} & {} f_1(\varvec{\theta }) = \frac{1}{N} \left[ \sum _{n=1}^N w \left( \frac{n}{N} \right) (\mu (n;{\varvec{\theta }}^0) - \mu (n;{\varvec{\theta }}))^2 \right] , \\{} & {} f_2(\varvec{\theta }) = \frac{2}{N} \left[ \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n)(\mu (n;{\varvec{\theta }}^0) - \mu (n;{\varvec{\theta }})) \right] . \end{aligned}$$

Consider

$$\begin{aligned}S_{c,1}= & {} \{{\varvec{\theta }}:{\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |A-A^0| \ge c\} \\ S_{c,2}= & {} \{{\varvec{\theta }}: {\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |B-B^0| \ge c\} \\ S_{c,3}= & {} \{{\varvec{\theta }}: {\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |C-C^0| \ge c\} \\ S_{c,4}= & {} \{{\varvec{\theta }}: {\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |D-D^0| \ge c\} \\ S_{c,5}= & {} \{{\varvec{\theta }}: {\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |\alpha -\alpha ^0| \ge c\} \\ S_{c,6}= & {} \{{\varvec{\theta }}: {\varvec{\theta }} = (A,B,C,D,\alpha ,\beta )^{\top }, |\beta -\beta ^0| \ge c\}. \end{aligned}$$

Now \(\displaystyle S_c \in \cup _{j=1}^6 S_{c,j} = S\). Therefore,

$$\begin{aligned} \underline{\lim } \inf _{\theta \in S_c} f_1(\varvec{\theta }) \ge \underline{\lim } \inf _{{\varvec{\theta }} \in S} f_1(\theta ) = \underline{\lim } \inf _{{\varvec{\theta }} \in \cup _j S_{c,j}} f_1(\theta ). \end{aligned}$$

Now

$$\begin{aligned}\underline{\lim } \inf _{{\varvec{\theta }} \in S_{c,1}} f_1(\theta )= & {} \underline{\lim } \inf _{|A-A^0| \ge c} (A-A^0)^2 \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha ^0 n) \\\ge & {} \gamma \ \ \underline{\lim } \inf _{|A-A^0| \ge c} (A-A^0)^2 \frac{1}{N} \sum _{n=1}^N \cos ^2(\alpha ^0 n) > 0,\\{} & {} \ \ \ \ \ (\hbox {using Result A.1}). \end{aligned}$$

Similarly using Results A.1 and A.2, it can be shown for \(S_{c,2}, \ldots , S_{c,6}\) also. Therefore,

$$ \underline{\lim } \inf _{{\varvec{\theta }} \in S_c} f_1(\varvec{\theta }) > 0. $$

Using Lemma B-7, it follows that

$$ \lim \sup _{{\varvec{\theta }}} |f_2(\varvec{\theta })| = 0, $$

therefore

$$ \underline{\lim } \inf _{{\varvec{\theta }} \in S_c} \frac{1}{N} [Q(\varvec{\theta }) - Q({\varvec{\theta }}^0)] > 0 \ \ \ \ a.s. $$

Using Lemma B-8, the result follows. \(\square \)

Appendix C: Proof of Theorem 2.

We need the following lemmas to prove Theorem 2.

Lemma

C-1: If \(0< \alpha , \beta < \pi \), and w(t) satisfies Assumption 1, then for \(k = 0,1,2, \ldots \),

$$\begin{aligned}&\hbox {(a)}&\lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin ^2(\alpha n) = \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha n)\\{} & {} = \frac{1}{2} \int _0^1 w(t) dt> \frac{\gamma }{2}, \\&\hbox {(b)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w\! \left( \frac{n}{N} \right) \!\sin (\alpha n)\\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n) = 0, \\&\hbox {(c)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin ^2(\alpha n) = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \!\left( \frac{n}{N} \right) \! \cos ^2(\alpha n) \\{} & {} \hspace{2.42 in} = \frac{1}{2} \int _0^1 t^k w(t) dt = \frac{c_{k+1}}{2} > 0, \\&\hbox {(d)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n) \cos (\alpha n) \\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n) \cos (\beta n) = 0, \\{} & {} \hbox {In addition if } \alpha \ne \beta , \hbox { then,} \\&\hbox {(e)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n) \sin (\beta n) \\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n) \cos (\beta n) = 0. \end{aligned}$$

Proof of Lemma C-1:

Proof of (a). First we will show

$$ \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2 (\alpha n) = \frac{1}{2} \int _0^1 w(t) dt. $$

For \(\epsilon > 0\), there exists a polynomial \(p_{\epsilon }(x)\), such that \(\displaystyle |w(x) - p_{\epsilon }(x)| \le \epsilon \), for all \(x \in [0,1]\). Hence,

$$ \int _0^1 w(x) dx - \epsilon \le \int _0^1 p_{\epsilon }(x) dx \le \int _0^1 w(x) dx + \epsilon . $$

Further

$$\begin{aligned}{} & {} \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(\alpha n) - \frac{\epsilon }{N} \sum _{n=1}^N \cos ^2(\alpha t ) \le \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha n) \le \\{} & {} \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(\alpha n) + \frac{\epsilon }{N} \sum _{n=1}^N \cos ^2(\alpha n). \end{aligned}$$

Suppose

$$ p_{\epsilon }(x) = a_0 + a_1 x + \cdots + a_k x^k \ \ \ \ \ \Rightarrow \ \ \ \int _0^1 p_{\epsilon }(x) dx = a_0 + \frac{a_1}{2} + \cdots + \frac{a_k}{k+1}. $$

Now due to Result A.1,

$$\begin{aligned}\frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(\alpha n)= & {} \frac{1}{N} \sum _{n=1}^N \left\{ a_0 + \frac{a_1n}{N} + \cdots + \frac{a_k n^k}{N^k} \right\} \cos ^2(\alpha n) \\\longrightarrow & {} \frac{1}{2} \left[ a_0 + \frac{a_1}{2} + \cdots + \frac{a_k}{k+1} \right] = \frac{1}{2} \int _0^1 p_{\epsilon }(x) dx. \end{aligned}$$

Therefore,

$$\begin{aligned}{} & {} \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(\alpha n) - \frac{\epsilon }{2} \le \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha n) \le \\{} & {} \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N p_{\epsilon } \left( \frac{n}{N} \right) \cos ^2(\alpha n) + \frac{\epsilon }{2}. \end{aligned}$$

Hence

$$ \frac{1}{2} \int _0^1 w(t) dt - \frac{\epsilon }{2} \le \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha n) \le \frac{1}{2} \int _0^1 w(t) dt + \frac{\epsilon }{2}. $$

Since \(\epsilon \) is arbitrary, the result follows.

The result involving \(\sin ^2(\alpha n)\) will go through exactly in the same way. Note that using (a), Result A.2 and by properly choosing \(w(\cdot )\), (b), (c), (d) and (e) follow. \(\square \)

Lemma

C-2: If \(0< \alpha , \beta < \pi \), and w(t) satisfies Assumption 1, then except for countable number of points, for \(k = 0,1,2, \ldots \),

$$\begin{aligned}&\hbox {(a)}&\lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin ^2(\beta n^2) = \lim _{N \rightarrow \infty } \frac{1}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\beta n^2) \\{} & {} = \frac{1}{2} \int _0^1 w(t) dt> \frac{\gamma }{2}, \\&\hbox {(b)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin ^2(\beta n^2) \\ {}{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos ^2(\beta n^2) = \frac{1}{2} \int _0^1 t^k w(t) dt = \frac{c_{k+1}}{2} > 0, \\&\hbox {(c)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2)\\{} & {} =\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n^2) = 0, \\&\hbox {(d)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \cos (\alpha n^2)\\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin (\alpha n^2) \cos (\beta n^2) = 0, \\&\hbox {(f)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \sin (\beta n) \\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\alpha n^2) \cos (\beta n) = 0, \\&\hbox {(g)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \cos (\beta n) \\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\alpha n^2) \sin (\beta n) = 0, \\{} & {} \hbox {In addition if } \alpha \ne \beta , \hbox { then,} \\&\hbox {(e)}&\lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \sin (\beta n^2) \\{} & {} = \lim _{N \rightarrow \infty } \frac{1}{N^{k+1}} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\alpha n^2) \cos (\beta n^2) = 0. \\ \end{aligned}$$

Proof of Lemma C-2:

The proof follows along the same line as the proof of Lemma C-1. \(\square \)

Lemma

C-3: If \(\alpha , \beta \in (0,\pi )\), and if Conjecture A is true, then except for countable number of points, for \(k = 0,1,2, \ldots \),

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n^2) \sin (\beta n^2)= & {} 0. \\ \end{aligned}$$

In addition if \(\alpha \ne \beta \), then

$$\begin{aligned}\lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n^2) \cos (\beta n^2)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \sin (\beta n^2)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n^2) \cos (\beta n)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \sin (\beta n)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \sin (\alpha n^2) \cos (\beta n)= & {} 0, \\ \lim _{N \rightarrow \infty } \frac{1}{\sqrt{N} N^k} \sum _{n=1}^N n^k w \left( \frac{n}{N} \right) \cos (\alpha n^2) \sin (\beta n)= & {} 0. \end{aligned}$$

Proof of Lemma C-3:

If Conjecture A is true, then proof follows along the same line as the proof of Lemma C-1. \(\square \)

Proof of Theorem 2:

This proof can be obtained by expanding \(Q({\varvec{\theta }})\) around the point \({\varvec{\theta }}^0\). We will use the structure of the weight function w(t), Lemmas C-1 and C-2 and the Central Limit Theorem of the stochastic process to obtain the asymptotic distribution of \(\widehat{\varvec{\theta }}\). The criterion function is

$$ Q({\varvec{\theta }}) = \sum _{n=1}^N w \left( \frac{n}{N} \right) \left( y(n) - A\cos (\alpha n) - B\sin (\alpha n) - C\cos (\beta n^2) - D\sin (\beta n^2) \right) ^2, $$

therefore, the vector of first order derivatives is

$$\begin{aligned} Q'({\varvec{\theta }}^0)= & {} \left[ \begin{array}{c} \frac{\partial Q({\varvec{\theta }})}{\partial A} \\ \frac{\partial Q({\varvec{\theta }})}{\partial B} \\ \frac{\partial Q({\varvec{\theta }})}{\partial \alpha } \\ \frac{\partial Q({\varvec{\theta }})}{\partial C} \\ \frac{\partial Q({\varvec{\theta }})}{\partial D} \\ \frac{\partial Q({\varvec{\theta }})}{\partial \beta } \end{array} \right] _{{\varvec{\theta }} = {\varvec{\theta }}^0}\\ {}= & {} -2 \left[ \begin{array}{c} \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) \cos (\alpha ^0 n) \\ \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) \sin (\alpha ^0 n) \\ \sum _{n=1}^N n w \left( \frac{n}{N} \right) X(n) (B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n)) \\ \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) \cos (\beta ^0 n^2) \\ \sum _{n=1}^N w \left( \frac{n}{N} \right) X(n) \sin (\beta ^0 n^2) \\ \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) X(n) (D^0 \cos (\beta ^0 n^2) - C^0 \sin (\beta ^0 n^2)) \end{array} \right] \end{aligned}$$

and the matrix of second order derivatives is

$$ Q^{''}({\varvec{\theta }}^0) = \left[ \begin{array}{cccccc} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial A^2} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial A \partial B} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial A \partial \alpha } &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial A \partial C} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial A \partial D} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial A \partial \beta } \\ \frac{\partial ^2 Q({\varvec{\theta }})}{\partial B \partial A} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial B^2} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial B \partial \alpha } &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial B \partial C} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial B \partial D} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial B \partial \beta } \\ \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \alpha \partial A} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \alpha \partial B} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \alpha ^2} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \alpha \partial C} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \alpha \partial D} &{}\frac{\partial ^2 Q({\varvec{\theta }})}{\partial \alpha \partial \beta } \\ \frac{\partial ^2 Q({\varvec{\theta }})}{\partial C \partial A} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial C \partial B} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial C \partial \alpha } &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial C^2} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial C \partial D} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial C \partial \beta } \\ \frac{\partial ^2 Q({\varvec{\theta }})}{\partial D \partial A} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial D \partial B} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial D \partial \alpha } &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial D \partial C} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial D^2} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial D \partial \beta } \\ \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \beta \partial A} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \beta \partial B} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \beta \partial \alpha } &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \beta \partial C} &{} \frac{\partial ^2 Q({\varvec{\theta }})}{\partial \beta \partial D} &{}\frac{\partial ^2 Q({\varvec{\theta }})}{\partial \beta ^2} \end{array} \right] _{{\varvec{\theta }} = {\varvec{\theta }}^0}. $$

The elements of \(Q^{''}({\varvec{\theta }}^0)\) are given in Appendix D. Consider the following diagonal matrix

$$\begin{aligned} {\varvec{D}} = \text {diag}(N^{-1/2},N^{-1/2},N^{-3/2},N^{-1/2},N^{-1/2},N^{-5/2}) = \left( \begin{array}{cc} {\varvec{D}}_1^{-1} &{} \textbf{0} \\ \textbf{0} &{} {\varvec{D}}_2^{-1} \end{array} \right) , \end{aligned}$$
(23)

where \({\varvec{D}}_1\) and \({\varvec{D}}_2\) are same as used in the statement of Theorem 2. Then using Lemmas C-1 and C-2, it follows that

$$\begin{aligned} {\varvec{D}} Q'({\varvec{\theta }}^0) {\mathop {\longrightarrow }\limits ^{d}} N_6({\varvec{0}}, \sigma ^2 \ \mathbf{\Sigma }), \end{aligned}$$
(24)

where

$$ {\varvec{\Sigma }} = \left( \begin{array}{cc}\zeta {\varvec{\Sigma }}_1 &{} \textbf{0} \\ \textbf{0} &{} \eta {\varvec{\Sigma }}_2 \end{array} \right) . $$

Here \({\varvec{\Sigma }}_1\) and \({\varvec{\Sigma }}_2\) are same as defined in equation (10) and

$$ \zeta = \left| \sum _{k=-\infty }^{\infty } a(k) e^{i \alpha ^0 k} \right| ^2, \;\;\; \eta = \left| \sum _{k=-\infty }^{\infty } a(k) e^{i 3\beta ^0 k^2.} \right| ^2. $$

Now expanding \(Q'(\widehat{\varvec{\theta }})\) around \({\varvec{\theta }}^0\) using multivariate Taylor series expansion, we obtain

$$ Q'(\widehat{\varvec{\theta }}) = Q'({\varvec{\theta }}^0) + Q''(\bar{\varvec{\theta }})(\widehat{\varvec{\theta }}-{\varvec{\theta }}^0), $$

where \(\bar{\varvec{\theta }}\) lies on the line joining \(\widehat{\varvec{\theta }}\) and \({\varvec{\theta }}^0\). Since \(\widehat{\varvec{\theta }}\) minimizes \(Q({\varvec{\theta }})\), we have \(Q'(\widehat{\varvec{\theta }}) = {\varvec{0}}\), therefore

$$\begin{aligned} {\varvec{D}} Q'({\varvec{\theta }}^0) = - {\varvec{D}} Q''(\bar{\varvec{\theta }}){\varvec{D}}{\varvec{D}}^{-1}(\widehat{\varvec{\theta }}-{\varvec{\theta }}^0). \end{aligned}$$
(25)

Theorem 1 implies that \(\widehat{\varvec{\theta }} {\mathop {\longrightarrow }\limits ^{a.s.}}{\varvec{\theta }}^0\). Therefore, using the continuous mapping theorem and repeated use of Lemmas C-1 and C-2, we observe that

$$\begin{aligned} \lim _{N \rightarrow \infty } {\varvec{D}} Q^{''}(\bar{\varvec{\theta }}) {\varvec{D}} = \lim _{N \rightarrow \infty } {\varvec{D}} Q^{''}(\theta ^0) {\varvec{D}} = {\varvec{G}}, \end{aligned}$$
(26)

where

$$ {\varvec{G}} = \left( \begin{array}{cc} {\varvec{G}}_1 &{} \textbf{0} \\ \textbf{0} &{} {\varvec{G}}_2 \end{array} \right) . $$

with \({\varvec{G}}_1\) and \({\varvec{G}}_2\) same as defined in (11). Now using (24) and (26) in (25), we obtain

$$ {\varvec{D}}^{-1}(\widehat{\varvec{\theta }}-{\varvec{\theta }}^0) {\mathop {\longrightarrow }\limits ^{d}} N_6({\varvec{0}}, \sigma ^2 \ \mathbf{\Sigma }^{-1} {\varvec{G}} \mathbf{\Sigma }^{-1}). $$

Hence, the result follows. \(\square \)

Appendix D

The second order derivatives of \(Q({\varvec{\theta }})\) with respect to elements of \({\varvec{\theta }}\) at \({\varvec{\theta }}^0\) are provided in this Appendix.

$$\begin{aligned}\frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A^2}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha ^0 n), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A \partial B}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\alpha ^0 n) \sin (\alpha ^0 n), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A \partial \alpha }= & {} 2 \sum _{n=1}^N n \ w \left( \frac{n}{N} \right) (B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n))\cos (\alpha ^0 n ) \\{} & {} + 2 \sum _{n=1}^N n \ w \left( \frac{n}{N} \right) X(n) \sin (\alpha ^0 n ), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A \partial C}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\alpha ^0 n) \cos (\beta ^0 n^2), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A \partial D}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\alpha ^0 n) \sin (\beta ^0 n^2), \end{aligned}$$
$$\begin{aligned}\frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A \partial \beta }= & {} 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) \cos (\alpha ^0 n) (D^0 \cos (\beta ^0 n^2) - C^0 \sin (\beta ^0 n^2)) \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial B^2}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin ^2(\alpha ^0 n), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial B \partial \alpha }= & {} 2 \sum _{n=1}^N n \ w \left( \frac{n}{N} \right) (B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n ))\sin (\alpha ^0 n) \\{} & {} - 2 \sum _{n=1}^N n \ w \left( \frac{n}{N} \right) X(n) \cos (\alpha ^0 n ), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial B \partial C}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin (\alpha ^0 n) \cos (\beta ^0 n^2), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial B \partial D}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin (\alpha ^0 n) \sin (\beta ^0 n^2), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial B \partial \beta }= & {} 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) \sin (\alpha ^0 n) (D^0 \cos (\beta ^0 n^2) - C^0 \sin (\beta ^0 n^2)) \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial \alpha ^2}= & {} 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) \left( B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n)\right) ^2 \\ \hspace{.5in}{} & {} + 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) X(n) \left\{ A^0 \cos (\alpha ^0 n) + B^0 \sin (\alpha ^0 n)\right\} , \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial \alpha \partial C}= & {} 2\sum _{n=1}^N n \ w \left( \frac{n}{N} \right) \cos (\beta ^0 n^2) (B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n)), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial \alpha \partial D}= & {} 2\sum _{n=1}^N n \ w \left( \frac{n}{N} \right) \sin (\beta ^0 n^2) (B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n)), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial \alpha \partial \beta }= & {} 2 \sum _{n=1}^N n^3 w \left( \frac{n}{N} \right) (B^0 \cos (\alpha ^0 n) - A^0 \sin (\alpha ^0 n)) (D^0 \cos (\beta ^0 n^2) \\{} & {} - C^0 \sin (\beta ^0 n^2)) \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial C^2}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\beta ^0 n^2), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial C \partial D}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos (\beta ^0 n^2) \sin (\beta ^0 n^2), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial C \partial \beta }= & {} 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) (D^0 \cos (\beta ^0 n^2) - C^0 \sin (\beta ^0 n^2))\cos (\beta ^0 n^2 ) \\{} & {} + 2 \sum _{n=1}^N n w \left( \frac{n}{N} \right) X(n) \sin (\beta ^0 n^2 ), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial D^2}= & {} 2 \sum _{n=1}^N w \left( \frac{n}{N} \right) \sin ^2(\beta ^0 n^2), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial D \partial \beta }= & {} 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) (D^0 \cos (\beta ^0 n^0) - C^0 \sin (\beta ^0 n^2))\sin (\beta ^0 n^2) \\{} & {} - 2 \sum _{n=1}^N n^2 w \left( \frac{n}{N} \right) X(n) \cos (\beta ^0 n^2 ), \\ \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial \beta ^2}= & {} 2 \sum _{n=1}^N n^4 w \left( \frac{n}{N} \right) \left( D^0 \cos (\beta ^0 n^2) - C^0 \sin (\beta ^0 n^2)\right) ^2 \\ \hspace{.5in}{} & {} + 2 \sum _{n=1}^N n^4 w \left( \frac{n}{N} \right) X(n) \left\{ C^0 \cos (\beta ^0 n^2) + D^0 \sin (\beta ^0 n^2)\right\} . \end{aligned}$$

Now consider the \((1,1)^{th}\) element of \(\textbf{D} Q({\varvec{\theta }}^0) \textbf{D}\) for large N.

$$\begin{aligned}\lim _{N\rightarrow \infty } \frac{1}{N} \frac{\partial ^2 Q({\varvec{\theta }}^0)}{\partial A^2}= & {} \lim _{N\rightarrow \infty }\frac{2}{N} \sum _{n=1}^N w \left( \frac{n}{N} \right) \cos ^2(\alpha ^0 n) \\= & {} \lim _{N\rightarrow \infty } \frac{2}{N} \sum _{n=1}^N \Bigl (1 + a_1 \frac{n}{N} + a_2 \frac{n^2}{N^2} + \cdot + a_m \frac{n^m}{N^m} \Bigr )\cos ^2(\alpha ^0 n) \\= & {} \bigl (1 + \frac{a_1}{2} + \frac{a_2}{3} + \cdots + \frac{a_m}{m+1} \bigr )= c_1, \end{aligned}$$

using Result A.1. Here \(c_{k+1}, k=0, 1,\ldots \) are same as defined in (8). Similarly the other elements of \(\displaystyle \lim _{N\rightarrow \infty } \textbf{D} Q({\varvec{\theta }}^0) \textbf{D}\) can be obtained using Lemmas C-1 and C-2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, D., Nandi, S. & Grover, R. On Weighted Least Squares Estimators for Chirp Like Model. Sankhya A 86, 27–66 (2024). https://doi.org/10.1007/s13171-023-00313-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-023-00313-x

Keywords

Mathematics Subject Classification

Navigation