Skip to main content

Advertisement

Log in

Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Background

Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals.

Methods

Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment.

Results

Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis.

Conclusion

Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities as

  • predictors of high oxidative stress and disease progression,

  • targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, and

  • references for personalized antioxidant and antifibrotic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BALF:

Bronchoalveolar lavage fluid

CCR2:

C-C motif chemokine receptor-2

DEGs:

Differentially expressed genes

EMT:

Epithelial mesenchymal transition

FPR2:

Formyl peptide receptor 2

GSVA:

Gene set variation analysis

HRCT:

High-resolution computed tomography

ILD:

Interstitial lung disease

IPF:

Idiopathic pulmonary fibrosis

KLF9:

KLF transcription factor 9

LASSO:

Least absolute shrinkage and selection operator

NOX4:

NADPH oxidase 4

OS:

Oxidative stress

OSRGs:

OS-related genes

PDK4:

Pyruvate dehydrogenase kinase 4

PPAR:

Proliferator-activated receptor

PPPM:

Predictive, preventive, and personalized medicine

PTGS2:

Prostaglandin-endoperoxide synthase 2

RF:

Random forest

ROC:

Receiver operating characteristic

ROS:

Reactive oxygen species

SASPs:

Senescence-associated secretory phenotypes

SVM-RFE:

Support vector machine-recursive feature elimination

THBS1:

Thrombospondin 1

UIP:

Usual interstitial pneumonia

WGCNA:

Weighted gene co-expression network analysis

References

  1. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205:e18–47. https://doi.org/10.1164/rccm.202202-0399ST.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, et al. Idiopathic pulmonary fibrosis: Current and future treatment. Clin Respir J. 2022;16:84–96. https://doi.org/10.1111/crj.13466.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kašiković Lečić S, Javorac J, Živanović D, Lovrenski A, Tegeltija D, Zvekić Svorcan J, et al. Management of musculoskeletal pain in patients with idiopathic pulmonary fibrosis: a review. Ups J Med Sci. 2022;127. https://doi.org/10.48101/ujms.v127.8739.

  4. Huang Y, Li C, Shi D, Wang H, Shang X, Wang W, et al. Integrating oculomics with genomics reveals imaging biomarkers for preventive and personalized prediction of arterial aneurysms. EPMA J. 2023;14:73–86. https://doi.org/10.1007/s13167-023-00315-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo T-TKS, et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023;14:21–42. https://doi.org/10.1007/s13167-023-00314-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J. 2022;13:649–69. https://doi.org/10.1007/s13167-022-00300-6.

    Article  PubMed  Google Scholar 

  7. Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, et al. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr. 2022;9:992331. https://doi.org/10.3389/fnut.2022.992331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kreuter M, Polke M, Walsh SLF, Krisam J, Collard HR, Chaudhuri N, et al. Acute exacerbation of idiopathic pulmonary fibrosis: international survey and call for harmonisation. Eur Respir J. 2020;55:1901760. https://doi.org/10.1183/13993003.01760-2019.

    Article  PubMed  Google Scholar 

  9. Abramson MJ, Walters EH. Mapping air pollution and idiopathic pulmonary fibrosis. Respirology. 2021;26:292–3. https://doi.org/10.1111/resp.14004.

    Article  PubMed  Google Scholar 

  10. Abramson MJ, Murambadoro T, Alif SM, Benke GP, Dharmage SC, Glaspole I, et al. Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: case-control study. Thorax. 2020;75:864–9. https://doi.org/10.1136/thoraxjnl-2019-214478.

    Article  PubMed  Google Scholar 

  11. Kishaba T. Evaluation and management of Idiopathic Pulmonary Fibrosis. Respir Investig. 2019;57:300–11. https://doi.org/10.1016/j.resinv.2019.02.003.

    Article  PubMed  Google Scholar 

  12. Roksandic Milenkovic M, Klisic A, Ceriman V, Kotur Stevuljevic J, Savic Vujovic K, Mirkov D, et al. Oxidative stress and inflammation parameters-novel biomarkers for idiopathic pulmonary fibrosis. Eur Rev Med Pharmacol Sci. 2022;26:927–34. https://doi.org/10.26355/eurrev_202202_28002.

    Article  CAS  PubMed  Google Scholar 

  13. Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Yarahmadi R, Ghaznavi H, Mehrzadi S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin Ther Targets. 2018;22:1049–61. https://doi.org/10.1080/14728222.2018.1541318.

    Article  CAS  PubMed  Google Scholar 

  14. Cheresh P, Kim S-J, Jablonski R, Watanabe S, Lu Z, Chi M, et al. SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. Int J Mol Sci. 2021;22:6856. https://doi.org/10.3390/ijms22136856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Podolanczuk AJ, Noth I, Raghu G. Idiopathic pulmonary fibrosis: prime time for a precision-based approach to treatment with -acetylcysteine. Eur Respir J. 2021;57:2003551. https://doi.org/10.1183/13993003.03551-2020.

    Article  CAS  PubMed  Google Scholar 

  16. Estornut C, Milara J, Bayarri MA, Belhadj N, Cortijo J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2022;12:35. https://doi.org/10.3389/fphar.2021.794997.

    Article  CAS  Google Scholar 

  17. Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol. 2020;62:413–22. https://doi.org/10.1165/rcmb.2019-0328TR.

    Article  CAS  PubMed  Google Scholar 

  18. Han XD, Yuan T, Zhang JL, Shi YG, Li DG, Dong YP, et al. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J Cell Mol Med. 2022;26:3269–80. https://doi.org/10.1111/jcmm.17333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calverley P, Rogliani P, Papi A. Safety of N-Acetylcysteine at High Doses in Chronic Respiratory Diseases: A Review. Drug Saf. 2021;44:273–90. https://doi.org/10.1007/s40264-020-01026-y.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, et al. Troglitazone attenuates TGF-β1-induced EMT in alveolar epithelial cells via a PPARγ-independent mechanism. PLoS One. 2012;7:e38827. https://doi.org/10.1371/journal.pone.0038827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang IV, Coldren CD, Leach SM, Seibold MA, Murphy E, Lin J, et al. Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax. 2013;68:1114–21. https://doi.org/10.1136/thoraxjnl-2012-202943.

    Article  PubMed  Google Scholar 

  22. DePianto DJ, Chandriani S, Abbas AR, Jia GQ, N'Diaye EN, Caplazi P, et al. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax. 2015;70:48–56. https://doi.org/10.1136/thoraxjnl-2013-204596.

    Article  PubMed  Google Scholar 

  23. Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang YZ, Dhir R, et al. Gene Expression Profiles of Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2009;180:167–75. https://doi.org/10.1164/rccm.200810-1596OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molyneaux PL, Willis-Owen SAG, Cox MJ, James P, Cowman S, Loebinger M, et al. Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2017;195:1640–50. https://doi.org/10.1164/rccm.201607-1408OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:13. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  Google Scholar 

  26. Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13:15. https://doi.org/10.1038/s41467-022-32552-1.

    Article  CAS  Google Scholar 

  27. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:13. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  Google Scholar 

  28. Langfelder P, Horvath S. Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw. 2012;46:1–17.

    Article  Google Scholar 

  29. Ginestet C. ggplot2: Elegant Graphics for Data Analysis. J R Stat Soc Ser A-Stat Soc. 2011;174:245. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x.

    Article  Google Scholar 

  30. Gu ZG, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2. https://doi.org/10.1093/bioinformatics/btu393.

    Article  CAS  PubMed  Google Scholar 

  31. Luo WJ, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1. https://doi.org/10.1093/bioinformatics/btt285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26:1572–3. https://doi.org/10.1093/bioinformatics/btq170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie NN, Wang FF, Zhou J, Liu C, Qu F. Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network. Biomed Res Int. 2020;2020:2613091. https://doi.org/10.1155/2020/2613091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan X, Jin X, Wang J, Hu Q, Dai B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am J Transl Res. 2021;13:4068–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Newman AM, Liu CL, Green MR, Gentles AJ, Feng WG, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35. https://doi.org/10.1126/science.1132939.

    Article  CAS  PubMed  Google Scholar 

  37. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. https://doi.org/10.1038/nbt.4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu C, Li T, Xu Y, Zhang X, Li F, Bai J, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51:D870-6. https://doi.org/10.1093/nar/gkac947.

    Article  CAS  Google Scholar 

  39. Cui TL, Kusunose M, Hamada A, Ono M, Miyamura M, Yoshioka S, et al. Relationship between the eosinophilia of bronchoalveolar lavage fluid (BALF) and rats he severity of pulmonary fibrosis induced by bleomycin in rats. Biol Pharm Bull. 2003;26:959–63. https://doi.org/10.1248/bpb.26.959.

    Article  CAS  PubMed  Google Scholar 

  40. Szapiel SV, Elson NA, Fulmer JD, Hunninghake GW, Crystal RG. Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse. Am Rev Respir Dis. 1979;120:893–9. https://doi.org/10.1164/arrd.1979.120.4.893.

    Article  CAS  PubMed  Google Scholar 

  41. Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol. 1988;41:467–70. https://doi.org/10.1136/jcp.41.4.467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han MK, Bach DS, Hagan PG, Yow E, Flaherty KR, Toews GB, et al. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest. 2013;143:1699–708. https://doi.org/10.1378/chest.12-1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swigris JJ, Esser D, Conoscenti CS, Brown KK. The psychometric properties of the St George's Respiratory Questionnaire (SGRQ) in patients with idiopathic pulmonary fibrosis: a literature review. Health Qual Life Outcomes. 2014;12:124. https://doi.org/10.1186/s12955-014-0124-1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schwartz DA, Helmers RA, Galvin JR, Van Fossen DS, Frees KL, Dayton CS, et al. Determinants of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1994;149:450–4. https://doi.org/10.1164/ajrccm.149.2.8306044.

    Article  CAS  PubMed  Google Scholar 

  45. Kinder BW, Brown KK, Schwarz MI, Ix JH, Kervitsky A, King TE. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest. 2008;133:226–32. https://doi.org/10.1378/chest.07-1948.

    Article  CAS  PubMed  Google Scholar 

  46. Ham J, Kim J, Ko YG, Kim HY. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. Allergy Asthma Immunol Res. 2022;14:361–78. https://doi.org/10.4168/aair.2022.14.4.361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeong BM, Walker MT, Rodriguez R, Coden ME, Nagasaka R, Doan TC, et al. More than neutrophils: Lin(+)Ly6G(+)IL-5Rα(+) multipotent myeloid cells (MMCs) are dominant in normal murine bone marrow and retain capacity to differentiate into eosinophils and monocytes. J Leukoc Biol. 2022;111:113–22. https://doi.org/10.1002/JLB.1AB0519-170RR.

    Article  CAS  PubMed  Google Scholar 

  48. Kikuchi N, Ishii Y, Morishima Y, Yageta Y, Haraguchi N, Itoh K, et al. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respir Res. 2010;11:31. https://doi.org/10.1186/1465-9921-11-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fang L, Wang W, Chen J, Zuo A, Gao H, Yan T, et al. Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice. Oxid Med Cell Longev. 2021;2021:3309944. https://doi.org/10.1155/2021/3309944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang LS, Jiang P, Feghali-Bostwick C, Reddy SP, Garcia JGN, Natarajan V. Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation. Free Radic Biol Med. 2017;112:162–73. https://doi.org/10.1016/j.freeradbiomed.2017.07.023.

    Article  CAS  PubMed  Google Scholar 

  51. Virk HS, Biddle MS, Smallwood DT, Weston CA, Castells E, Bowman VW, et al. TGFβ1 induces resistance of human lung myofibroblasts to cell death via down-regulation of TRPA1 channels. Br J Pharmacol. 2021;178:2948–62. https://doi.org/10.1111/bph.15467.

    Article  CAS  PubMed  Google Scholar 

  52. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6:231ra247. https://doi.org/10.1126/scitranslmed.3008182.

    Article  CAS  Google Scholar 

  53. Uhal BD, Kim JK, Li X, Molina-Molina M. Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des. 2007;13:1247–56. https://doi.org/10.2174/138161207780618885.

    Article  CAS  PubMed  Google Scholar 

  54. Cui Y, Robertson J, Maharaj S, Waldhauser L, Niu J, Wang J, et al. Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol. 2011;43:1122–33. https://doi.org/10.1016/j.biocel.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  55. Tsai C-C, Wu S-B, Chang P-C, Wei Y-H. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy. PLoS One. 2015;10:e0143514. https://doi.org/10.1371/journal.pone.0143514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yanagihara T, Tsubouchi K, Gholiof M, Chong SG, Lipson KE, Zhou Q, et al. Connective-Tissue Growth Factor Contributes to TGF-β1-induced Lung Fibrosis. Am J Respir Cell Mol Biol. 2022;66:260–70. https://doi.org/10.1165/rcmb.2020-0504OC.

    Article  CAS  PubMed  Google Scholar 

  57. Milara J, Navarro R, Juan G, Peiró T, Serrano A, Ramón M, et al. Sphingosine-1-phosphate is increased in patients with idiopathic pulmonary fibrosis and mediates epithelial to mesenchymal transition. Thorax. 2012;67:147–56. https://doi.org/10.1136/thoraxjnl-2011-200026.

    Article  PubMed  Google Scholar 

  58. Yasuoka H, Garrett SM, Nguyen X-X, Artlett CM, Feghali-Bostwick CA. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5. Am J Physiol Lung Cell Mol Physiol. 2019;316:L644–55. https://doi.org/10.1152/ajplung.00106.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology. 2021;15:1380–402. https://doi.org/10.1080/17435390.2022.2030822.

    Article  CAS  PubMed  Google Scholar 

  60. Sul OJ, Kim JH, Lee T, Seo KW, Cha HJ, Kwon B, et al. GSPE Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice via Ameliorating Epithelial Apoptosis through Inhibition of Oxidative Stress. Oxid Med Cell Longev. 2022;2022:8200189. https://doi.org/10.1155/2022/8200189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78:2031–57. https://doi.org/10.1007/s00018-020-03693-7.

    Article  CAS  PubMed  Google Scholar 

  62. Steven S, Oelze M, Brandt M, Ullmann E, Kröller-Schön S, Heeren T, et al. Pentaerythritol Tetranitrate In Vivo Treatment Improves Oxidative Stress and Vascular Dysfunction by Suppression of Endothelin-1 Signaling in Monocrotaline-Induced Pulmonary Hypertension. Oxid Med Cell Longev. 2017;2017:4353462. https://doi.org/10.1155/2017/4353462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim H-R, Park B-K, Oh Y-M, Lee Y-S, Lee D-S, Kim H-K, et al. Green tea extract inhibits paraquat-induced pulmonary fibrosis by suppression of oxidative stress and endothelin-l expression. Lung. 2006;184:287–95. https://doi.org/10.1007/s00408-005-2592-x.

    Article  PubMed  Google Scholar 

  64. Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res. 2016;17:110. https://doi.org/10.1186/s12931-016-0427-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chahal A, Sharif R, Watts J, de Andrade J, Luckhardt T, Kim Y-I, et al. Predicting Outcome in Idiopathic Pulmonary Fibrosis: Addition of Fibrotic Score at Thin-Section CT of the Chest to Gender, Age, and Physiology Score Improves the Prediction Model. Radiol Cardiothorac Imaging. 2019;1:e180029. https://doi.org/10.1148/ryct.2019180029.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li M, Wang K, Zhang Y, Fan M, Li A, Zhou J, et al. Ferroptosis-Related Genes in Bronchoalveolar Lavage Fluid Serves as Prognostic Biomarkers for Idiopathic Pulmonary Fibrosis. Front Med (Lausanne). 2021;8:693959. https://doi.org/10.3389/fmed.2021.693959.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86. https://doi.org/10.1101/gad.13.1.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, et al. Nrf2 amplifies oxidative stress via induction of Klf9. Mol Cell. 2014;53:916–28. https://doi.org/10.1016/j.molcel.2014.01.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gu Y, Wu Y-B, Wang L-H, Yin J-N. Involvement of Kruppel-like factor 9 in bleomycin-induced pulmonary toxicity. Mol Med Rep. 2015;12:5262–6. https://doi.org/10.3892/mmr.2015.4015.

    Article  CAS  PubMed  Google Scholar 

  70. Stama ML, Lacivita E, Kirpotina LN, Niso M, Perrone R, Schepetkin IA, et al. Functional N-Formyl Peptide Receptor 2 (FPR2) Antagonists Based on the Ureidopropanamide Scaffold Have Potential To Protect Against Inflammation-Associated Oxidative Stress. ChemMedChem. 2017;12:1839–47. https://doi.org/10.1002/cmdc.201700429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun. 1992;184:582–9. https://doi.org/10.1016/0006-291x(92)90629-y.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson KJ, Fantone JC, Kaplan J, Ward PA. In vivo damage of rat lungs by oxygen metabolites. J Clin Invest. 1981;67:983–93. https://doi.org/10.1172/jci110149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Higo H, Ohashi K, Tomida S, Okawa S, Yamamoto H, Sugimoto S, et al. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir Res. 2022;23:20. https://doi.org/10.1186/s12931-022-01940-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schilter H, Cantemir-Stone CZ, Leksa V, Ohradanova-Repic A, Findlay AD, Deodhar M, et al. The mannose-6-phosphate analogue, PXS64, inhibits fibrosis via TGF-β1 pathway in human lung fibroblasts. Immunol Lett. 2015;165:90–101. https://doi.org/10.1016/j.imlet.2015.04.003.

    Article  CAS  PubMed  Google Scholar 

  75. Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS, Kang JL. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol. 2015;8:1031–46. https://doi.org/10.1038/mi.2014.130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Milam JE, Keshamouni VG, Phan SH, Hu B, Gangireddy SR, Hogaboam CM, et al. PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;294:L891–901. https://doi.org/10.1152/ajplung.00333.2007.

    Article  CAS  PubMed  Google Scholar 

  77. Jeong J, Choi J. Advancing the Adverse Outcome Pathway for PPARγ Inactivation Leading to Pulmonary Fibrosis Using Bradford-Hill Consideration and the Comparative Toxicogenomics Database. Chem Res Toxicol. 2022;35:233–43. https://doi.org/10.1021/acs.chemrestox.1c00257.

    Article  CAS  PubMed  Google Scholar 

  78. Park GY, Christman JW. Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol. 2006;290:L797–805. https://doi.org/10.1152/ajplung.00513.2005.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang C-Y, Duan J-X, Yang H-H, Sun C-C, Zhong W-J, Tao J-H, et al. COX-2/sEH dual inhibitor PTUPB alleviates bleomycin-induced pulmonary fibrosis in mice via inhibiting senescence. FEBS J. 2020;287:1666–80. https://doi.org/10.1111/febs.15105.

    Article  CAS  PubMed  Google Scholar 

  80. Lappi-Blanco E, Kaarteenaho-Wiik R, Maasilta PK, Anttila S, Pääkkö P, Wolff HJ. COX-2 is widely expressed in metaplastic epithelium in pulmonary fibrous disorders. Am J Clin Pathol. 2006;126:717–24. https://doi.org/10.1309/PFGX-CLNG-2N17-PJX9.

    Article  CAS  PubMed  Google Scholar 

  81. Pini A, Viappiani S, Bolla M, Masini E, Bani D. Prevention of bleomycin-induced lung fibrosis in mice by a novel approach of parallel inhibition of cyclooxygenase and nitric-oxide donation using NCX 466, a prototype cyclooxygenase inhibitor and nitric-oxide donor. J Pharmacol Exp Ther. 2012;341:493–9. https://doi.org/10.1124/jpet.111.190660.

    Article  CAS  PubMed  Google Scholar 

  82. Peng J, Xiao X, Li S, Lyu X, Gong H, Tan S, et al. Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway. Exp Gerontol. 2023;172:112085. https://doi.org/10.1016/j.exger.2023.112085.

    Article  CAS  PubMed  Google Scholar 

  83. Rosa AC, Pini A, Lucarini L, Lanzi C, Veglia E, Thurmond RL, et al. Prevention of bleomycin-induced lung inflammation and fibrosis in mice by naproxen and JNJ7777120 treatment. J Pharmacol Exp Ther. 2014;351:308–16. https://doi.org/10.1124/jpet.114.215152.

    Article  CAS  PubMed  Google Scholar 

  84. Guilherme RF, Xisto DG, Kunkel SL, Freire-de-Lima CG, Rocco PRM, Neves JS, et al. Pulmonary antifibrotic mechanisms aspirin-triggered lipoxin A(4) synthetic analog. Am J Respir Cell Mol Biol. 2013;49:1029–37. https://doi.org/10.1165/rcmb.2012-0462OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bargagli E, Penza F, Vagaggini C, Magi B, Perari MG, Rottoli P. Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse lung diseases. Lung. 2007;185:139–44. https://doi.org/10.1007/s00408-007-9001-6.

    Article  CAS  PubMed  Google Scholar 

  86. Bolourani S, Brenner M, Wang P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl). 2021;99:1373–84. https://doi.org/10.1007/s00109-021-02113-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu Z-G. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 2013;23:898–914. https://doi.org/10.1038/cr.2013.75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tian Y, Li H, Qiu T, Dai J, Zhang Y, Chen J, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell. 2019;18:e12858. https://doi.org/10.1111/acel.12858.

    Article  CAS  PubMed  Google Scholar 

  89. Álvarez D, Cárdenes N, Sellarés J, Bueno M, Corey C, Hanumanthu VS, et al. IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol. 2017;313:L1164–73. https://doi.org/10.1152/ajplung.00220.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam. 2022;2022:4558159. https://doi.org/10.1155/2022/4558159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim Y-I, Shin H-W, Chun Y-S, Cho C-H, Koh J, Chung DH, et al. Epithelial cell-derived cytokines CST3 and GDF15 as potential therapeutics for pulmonary fibrosis. Cell Death Dis. 2018;9:506. https://doi.org/10.1038/s41419-018-0530-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Radwanska A, Cottage CT, Piras A, Overed-Sayer C, Sihlbom C, Budida R, et al. Increased expression and accumulation of GDF15 in IPF extracellular matrix contribute to fibrosis. JCI Insight. 2022;7:e153058. https://doi.org/10.1172/jci.insight.153058.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li X, Zhou Y, Zou R, Chen H, Liu X, Qiu X, et al. Associations of Serological Biomarkers of sICAM-1, IL-1, MIF, and su-PAR with 3-Month Mortality in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Mediators Inflamm. 2020;2020:4534272. https://doi.org/10.1155/2020/4534272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xia Y, Lei C, Yang D, Luo H. Identification of key modules and hub genes associated with lung function in idiopathic pulmonary fibrosis. PeerJ. 2020;8:e9848. https://doi.org/10.7717/peerj.9848.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Huang W-T, Vayalil PK, Miyata T, Hagood J, Liu R-M. Therapeutic value of small molecule inhibitor to plasminogen activator inhibitor-1 for lung fibrosis. Am J Respir Cell Mol Biol. 2012;46:87–95. https://doi.org/10.1165/rcmb.2011-0139OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rana T, Jiang C, Liu G, Miyata T, Antony V, Thannickal VJ, et al. PAI-1 Regulation of TGF-β1-induced Alveolar Type II Cell Senescence, SASP Secretion, and SASP-mediated Activation of Alveolar Macrophages. Am J Respir Cell Mol Biol. 2020;62:319–30. https://doi.org/10.1165/rcmb.2019-0071OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang C, Liu G, Luckhardt T, Antony V, Zhou Y, Carter AB, et al. Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell. 2017;16:1114–24. https://doi.org/10.1111/acel.12643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Han J-H, Hwang A-R, Nam D-H, Kim S, Choi HC, Lim JH, et al. ERK5 regulates basic fibroblast growth factor-induced type 1 plasminogen activator inhibitor expression and cell proliferation in lung fibroblasts. Life Sci. 2015;135:1–8. https://doi.org/10.1016/j.lfs.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  99. Liu F, Lagares D, Choi KM, Stopfer L, Marinković A, Vrbanac V, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308:L344–57. https://doi.org/10.1152/ajplung.00300.2014.

    Article  CAS  PubMed  Google Scholar 

  100. Huang G, Huang S, Cui H. Effect of M6A regulators on diagnosis, subtype classification, prognosis and novel therapeutic target development of idiopathic pulmonary fibrosis. Front Pharmacol. 2022;13:993567. https://doi.org/10.3389/fphar.2022.993567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shi X, Pan Z, Cai W, Zhang Y, Duo J, Liu R, et al. Identification and immunological characterization of cuproptosis-related molecular clusters in idiopathic pulmonary fibrosis disease. Front Immunol. 2023;14:1171445. https://doi.org/10.3389/fimmu.2023.1171445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ruan P, Todd JL, Zhao H, Liu Y, Vinisko R, Soellner JF, et al. Integrative multi-omics analysis reveals novel idiopathic pulmonary fibrosis endotypes associated with disease progression. Respir Res. 2023;24:141. https://doi.org/10.1186/s12931-023-02435-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li S, Shi J, Tang H. Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biol Toxicol. 2022;38:699–723. https://doi.org/10.1007/s10565-021-09676-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2020YFC2003100, 2020YFC2003101), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No. ZYYCXTD-C-202001).

Author information

Authors and Affiliations

Authors

Contributions

FY, Wen, and JW designed and conducted the whole research. CJ, WL and RC carried out animal experiments and molecular biological analysis. JK, YZ, MW and ZM applied for the GEO dataset analysis of IPF. FY, Wen, SJ, JG, and WeL completed the data analysis and drafted the manuscript. JW revised and finalized the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Ji Wang.

Ethics declarations

Ethics approval and consent to participate

Our laboratory followed the National Institute of Health Guide for the Care and Use of Laboratory Animals when handling and caring for animals. The study protocol was approved by the Research Ethics Committee of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine (Approval No. AWE2019046).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Wendusubilige, Kong, J. et al. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA Journal 14, 417–442 (2023). https://doi.org/10.1007/s13167-023-00334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-023-00334-4

Keywords

Navigation