Skip to main content

Advertisement

Log in

The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer

  • Review
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different oncogenic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composition of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and the microbial markers in HPV-related cancers in the context of 3P medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine. white paper of the European Association for Predictive. Prev Personal Med EPMA J. 2012;2012(3):14. https://doi.org/10.1186/1878-5085-3-14.

    Article  Google Scholar 

  2. Golubnitschaja O, Yeghiazaryan K, Costigliola V, Trog D, Braun M, Debald M, et al. Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon? EPMA J. 2013;4:6. https://doi.org/10.1186/1878-5085-4-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health Elsevier. 2020;8:e191-203. https://doi.org/10.1016/S2214-109X(19)30482-6.

    Article  Google Scholar 

  4. Stelzle D, Tanaka LF, Lee KK, Khalil AI, Baussano I, Shah ASV, et al. Estimates of the global burden of cervical cancer associated with HIV. The Lancet Global Health Elsevier. 2021;9:e161–9. https://doi.org/10.1016/S2214-109X(20)30459-9.

    Article  Google Scholar 

  5. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393:169–82. https://doi.org/10.1016/S0140-6736(18)32470-X.

    Article  PubMed  Google Scholar 

  6. zur Hausen H. Papillomaviruses in the causation of human cancers — a brief historical account. Virology. 2009;384:260–5. https://doi.org/10.1016/j.virol.2008.11.046.

  7. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, Ghissassi FE, et al. A review of human carcinogens—Part B: biological agents. Lancet Oncol. 2009;10:321–2. https://doi.org/10.1016/S1470-2045(09)70096-8.

    Article  PubMed  Google Scholar 

  8. Halec G, Alemany L, Lloveras B, Schmitt M, Alejo M, Bosch FX, et al. Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J Pathol. 2014;234:441–51. https://doi.org/10.1002/path.4405.

    Article  CAS  PubMed  Google Scholar 

  9. Bosch FX, de Sanjosé S. Chapter 1: Human papillomavirus and cervical cancer--burden and assessment of causality. J Natl Cancer Inst Monogr. 2003;3–13. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003479.

  10. Jaisamrarn U, Castellsagué X, Garland SM, Naud P, Palmroth J, Del Rosario-Raymundo MR, et al. Natural history of progression of HPV infection to cervical lesion or clearance: analysis of the control arm of the large, randomised PATRICIA study. PLoS ONE. 2013;8:e79260. https://doi.org/10.1371/journal.pone.0079260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burchell AN, Winer RL, de Sanjosé S, Franco EL. Chapter 6: Epidemiology and transmission dynamics of genital HPV infection. Vaccine. 2006;24(Suppl 3):S3/52-61. https://doi.org/10.1016/j.vaccine.2006.05.031.

    Article  Google Scholar 

  12. Demarco M, Lorey TS, Fetterman B, Cheung LC, Guido RS, Wentzensen N, et al. Risks of CIN 2+, CIN 3+, and cancer by cytology and human papillomavirus status: the foundation of risk-based cervical screening guidelines. J Low Genit Tract Dis. 2017;21:261–7. https://doi.org/10.1097/LGT.0000000000000343.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Demarco M, Egemen D, Raine-Bennett TR, Cheung LC, Befano B, Poitras NE, et al. A study of partial human papillomavirus genotyping in support of the 2019 ASCCP risk-based management consensus guidelines. J Low Genit Tract Dis. 2020;24:144–7. https://doi.org/10.1097/LGT.0000000000000530.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sasieni P, Castanon A, Landy R, Kyrgiou M, Kitchener H, Quigley M, et al. Risk of preterm birth following surgical treatment for cervical disease: executive summary of a recent symposium. BJOG. 2016;123:1426–9. https://doi.org/10.1111/1471-0528.13839.

    Article  CAS  PubMed  Google Scholar 

  15. Liskova Alena, Samec Marek, Koklesova Lenka, Kudela Erik, Kubatka Peter, Golubnitschaja Olga. Mitochondriopathies as a clue to systemic disorders: “vicious circle” of mitochondrial injury, analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. 2021; 18;22(4):2007 https://doi.org/10.3390/ijms22042007.

  16. Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, et al. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J. 2020;1–25. https://doi.org/10.1007/s13167-020-00226-x.

  17. Liskova A, Samec M, Koklesova L, Giordano FA, Kubatka P, Golubnitschaja O. Liquid biopsy is instrumental for 3PM dimensional solutions in cancer management. J Clin Med Multidiscip Digital Publishing Institute. 2020;9:2749. https://doi.org/10.3390/jcm9092749.

    Article  Google Scholar 

  18. Gerner C, Costigliola V, Golubnitschaja O. Multiomic patterns in body fluids: technological challenge with a great potential to implement the advances paradigm of 3P medicine. Mass Spectrom Rev. 2019. https://doi.org/10.1002/mas.21612.

    Article  PubMed  Google Scholar 

  19. Zoodsma M, Sijmons RH, de Vries EG, van der Zee AG. Familial cervical cancer: case reports, review and clinical implications. Hereditary Cancer Clin Pract. 2004;2:99. https://doi.org/10.1186/1897-4287-2-2-99.

    Article  Google Scholar 

  20. Oyervides-Muñoz MA, Pérez-Maya AA, Sánchez-Domínguez CN, Berlanga-Garza A, Antonio-Macedo M, Valdéz-Chapa LD, et al. Multiple HPV infections and viral load association in persistent cervical lesions in Mexican women. Viruses [Internet]. 2020 [cited 2021 Feb 21];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232502/. https://doi.org/10.3390/v12040380.

  21. Franceschi S, Herrero R, Clifford GM, Snijders PJF, Arslan A, Anh PTH, et al. Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. Int J Cancer. 2006;119:2677–84. https://doi.org/10.1002/ijc.22241.

    Article  CAS  PubMed  Google Scholar 

  22. Wendland EM, Villa LL, Unger ER, Domingues CM, Benzaken AS. Prevalence of HPV infection among sexually active adolescents and young adults in Brazil: the POP-Brazil study. Scientific Reports. Nature Publishing Group. 2020;10:4920. https://doi.org/10.1038/s41598-020-61582-2.

    Article  CAS  Google Scholar 

  23. Río-Ospina LD, León SCSD, Camargo M, Sánchez R, Mancilla CL, Patarroyo ME, et al. The prevalence of high-risk HPV types and factors determining infection in female Colombian adolescents. PLOS ONE Public Library of Science. 2016;11:e0166502. https://doi.org/10.1371/journal.pone.0166502.

    Article  CAS  Google Scholar 

  24. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia–cancer sequence. Nat Rev Cancer. 2017;17:594–604. https://doi.org/10.1038/nrc.2017.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bedin R, Gasparin VA, Pitilin ÉDB. Fatores associados às alterações cérvico-uterinas de mulheres atendidas em um município polo do oeste catarinense Factors associated to uterine-cervix changes in women assisted in a pole town in western Santa Catarina. R pesq cuid fundam online. 2017;9:167. https://doi.org/10.9789/2175-5361.2017.v9i1.167-174.

    Article  Google Scholar 

  26. Kang L-N, Castle PE, Zhao F-H, Jeronimo J, Chen F, Bansil P, et al. A prospective study of age trends of high-risk human papillomavirus infection in rural China. BMC Infect Dis. 2014;14:96. https://doi.org/10.1186/1471-2334-14-96.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Muñoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, et al. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet. 2002;359:1093–101. https://doi.org/10.1016/S0140-6736(02)08151-5.

    Article  PubMed  Google Scholar 

  28. Moreno V, Bosch FX, Muñoz N, Meijer CJLM, Shah KV, Walboomers JMM, et al. Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet. 2002;359:1085–92. https://doi.org/10.1016/S0140-6736(02)08150-3.

    Article  CAS  PubMed  Google Scholar 

  29. Orlando G, Tanzi A, Rizzardini G. Modifiable and non-modifiable factors related to HPV infection and cervical abnormalities in women at high risk: a cross-sectional analysis from the VALHIDATE study. 2016;21. Available from: https://air.unimi.it/handle/2434/424485#.YI1A3bUzaUk. Accessed 01 July 2016.

  30. Roura E, Travier N, Waterboer T, de Sanjosé S, Bosch FX, Pawlita M, et al. The influence of hormonal factors on the risk of developing cervical cancer and pre-cancer: results from the EPIC cohort. PLoS One [Internet]. 2016 [cited 2021 Mar 3];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726518/. https://doi.org/10.1371/journal.pone.0147029.

  31. Asthana S, Busa V, Labani S. Oral contraceptives use and risk of cervical cancer—a systematic review & meta-analysis. Eur J Obstet & Gynecol Reprod Biol. 2020;247:163–75. https://doi.org/10.1016/j.ejogrb.2020.02.014.

    Article  Google Scholar 

  32. Mignot S, Ringa V, Vigoureux S, Zins M, Panjo H, Saulnier P-J, et al. Pap tests for cervical cancer screening test and contraception: analysis of data from the CONSTANCES cohort study. BMC Cancer. 2019;19:317. https://doi.org/10.1186/s12885-019-5477-8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Torres-Poveda K, Ruiz-Fraga I, Madrid-Marina V, Chavez M, Richardson V. High risk HPV infection prevalence and associated cofactors: a population-based study in female ISSSTE beneficiaries attending the HPV screening and early detection of cervical cancer program. BMC Cancer. 2019;19:1205. https://doi.org/10.1186/s12885-019-6388-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fonseca-Moutinho JA. Smoking and cervical cancer. ISRN Obstet Gynecol [Internet]. 2011 [cited 2021 Mar 3];2011. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140050/. https://doi.org/10.5402/2011/847684.

  35. Oh HY, Kim MK, Seo S, Lee DO, Chung YK, Lim MC, et al. Alcohol consumption and persistent infection of high-risk human papillomavirus. Epidemiol Infect. 2015;143:1442–50. https://doi.org/10.1017/S0950268814002258.

    Article  CAS  PubMed  Google Scholar 

  36. Minkoff H, Zhong Y, Strickler HD, Watts DH, Palefsky JM, Levine AM, et al. The relationship between cocaine use and human papillomavirus infections in HIV-seropositive and HIV-seronegative women. Infect Dis Obstet Gynecol. 2008;2008:587082 https://doi.org/10.1155/2008/587082

  37. Shah SC, Kayamba V, Peek RM, Heimburger D. Cancer control in low- and middle-income countries: is it time to consider screening? JGO. Wolters Kluwer; 2019;1–8. https://doi.org/10.1200/JGO.18.00200.

  38. Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol [Internet]. 2018 [cited 2021 Mar 3];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966868/. https://doi.org/10.3389/fphys.2018.00477.

  39. Koshiyama M. The effects of the dietary and nutrient intake on gynecologic cancers. Healthcare (Basel) [Internet]. 2019 [cited 2021 Mar 3];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787610/. https://doi.org/10.3390/healthcare7030088.

  40. Castanheira CP, Sallas ML, Nunes RAL, Lorenzi NPC, Termini L. Microbiome and cervical cancer. Pathobiology. 2020;1–11. https://doi.org/10.1159/000511477.

  41. Lavitola G, Della Corte L, De Rosa N, Nappi C, Bifulco G. Effects on vaginal microbiota restoration and cervical epithelialization in positive HPV patients undergoing vaginal treatment with carboxy-methyl-beta-glucan. Biomed Res Int. 2020;2020:1–8. https://doi.org/10.1155/2020/5476389.

    Article  CAS  Google Scholar 

  42. Godha K, Tucker KM, Biehl C, Archer DF, Mirkin S. Human vaginal pH and microbiota: an update. Gynecol Endocrinol. 2018;34:451–5. https://doi.org/10.1080/09513590.2017.1407753.

    Article  PubMed  Google Scholar 

  43. Goncharenko V, Bubnov R, Polivka J, Zubor P, Biringer K, Bielik T, et al. Vaginal dryness: individualised patient profiles, risks and mitigating measures. EPMA J. 2019;10:73–9. https://doi.org/10.1007/s13167-019-00164-3.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas. 2016;91:42–50. https://doi.org/10.1016/j.maturitas.2016.05.015.

    Article  PubMed  Google Scholar 

  45. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:4. https://doi.org/10.1186/2049-2618-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. van de Wijgert JHHM, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H, et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? Fredricks DN, editor. PLoS ONE. 2014;9:e105998. https://doi.org/10.1371/journal.pone.0105998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UME, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Science Translational Medicine. 2012;4:132ra52-132ra52. https://doi.org/10.1126/scitranslmed.3003605.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol. 2020;17:232–50. https://doi.org/10.1038/s41585-020-0286-z.

    Article  CAS  PubMed  Google Scholar 

  49. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253. https://doi.org/10.1186/1479-5876-10-253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–35. https://doi.org/10.1016/j.chom.2011.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci. 2011;108:4680–7. https://doi.org/10.1073/pnas.1002611107.

    Article  PubMed  Google Scholar 

  52. Boris S, Suárez JE, Vázquez F, Barbés C. Adherence of human vaginal lctobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun. 1998;66:1985–9. https://doi.org/10.1128/IAI.66.5.1985-1989.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medina-Colorado AA, Vincent KL, Miller AL, Maxwell CA, Dawson LN, Olive T, et al. Vaginal ecosystem modeling of growth patterns of anaerobic bacteria in microaerophilic conditions. Anaerobe. 2017;45:10–8. https://doi.org/10.1016/j.anaerobe.2017.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  54. V. Sgibnev A, A. Kremleva E. Vaginal protection by H2O2-producing lactobacilli. Jundishapur J Microbiol [Internet]. 2015 [cited 2021 Mar 7];8. Available from: https://sites.kowsarpub.com/jjm/articles/56511.html. https://doi.org/10.5812/jjm.22913.

  55. Zadravec P, Štrukelj B, Berlec A. Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus species. Björkroth J, editor. Appl Environ Microbiol. 2015;81:2098–106. https://doi.org/10.1128/AEM.03694-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Homburg C, Bommer M, Wuttge S, Hobe C, Beck S, Dobbek H, et al. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr. Mol Microbiol. 2017;105:25–45. https://doi.org/10.1111/mmi.13680.

    Article  CAS  PubMed  Google Scholar 

  57. Wang S, Wang Q, Yang E, Yan L, Li T, Zhuang H. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit Candida albicans growth, hyphal formation and regulate virulence-related gene expressions. Front Microbiol [Internet]. 2017 [cited 2021 Mar 7];08. Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2017.00564/fullhttps://doi.org/10.3389/fmicb.2017.00564.

  58. Yang X, Da M, Zhang W, Qi Q, Zhang C, Han S. Role of Lactobacillus in cervical cancer. CMAR. 2018;10:1219–29. https://doi.org/10.2147/CMAR.S165228.

    Article  CAS  Google Scholar 

  59. So KA, Yang EJ, Kim NR, Hong SR, Lee J-H, Hwang C-S, et al. Changes of vaginal microbiota during cervical carcinogenesis in women with human papillomavirus infection. Consolaro MEL, editor. PLoS ONE. 2020;15:e0238705. https://doi.org/10.1371/journal.pone.0238705.

  60. Amabebe E, Anumba DOC. The vaginal microenvironment: the physiologic role of lactobacilli. Front Med. 2018;5:181. https://doi.org/10.3389/fmed.2018.00181.

    Article  Google Scholar 

  61. O’Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. Landay A, editor. PLoS ONE. 2013;8:e80074. https://doi.org/10.1371/journal.pone.0080074.

  62. Wang H, Ma Y, Li R, Chen X, Wan L, Zhao W. Associations of cervicovaginal lactobacilli with high-risk human papillomavirus infection, cervical intraepithelial neoplasia, and cancer: a systematic review and meta-analysis. J Infect Dis. 2019;220:1243–54. https://doi.org/10.1093/infdis/jiz325.

    Article  PubMed  Google Scholar 

  63. Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2014;21:450–8. https://doi.org/10.1097/GME.0b013e3182a4690b.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kyrgiou M, Mitra A, Moscicki A-B. Does the vaginal microbiota play a role in the development of cervical cancer? Transl Res. 2017;179:168–82. https://doi.org/10.1016/j.trsl.2016.07.004.

    Article  PubMed  Google Scholar 

  65. Chao X-P, Sun T-T, Wang S, Fan Q-B, Shi H-H, Zhu L, et al. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int J Gynecol Cancer. 2019;29:28–34. https://doi.org/10.1136/ijgc-2018-000032.

    Article  PubMed  Google Scholar 

  66. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865. https://doi.org/10.1038/srep16865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwebke JR, Muzny CA, Josey WE. Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: a conceptual model. J Infect Dis. 2014;210:338–43. https://doi.org/10.1093/infdis/jiu089.

    Article  PubMed  Google Scholar 

  68. Moscicki A-B, Shi B, Huang H, Barnard E, Li H. Cervical-vaginal microbiome and associated cytokine profiles in a prospective study of HPV 16 acquisition, persistence, and clearance. Front Cell Infect Microbiol. 2020;10:569022. https://doi.org/10.3389/fcimb.2020.569022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Piyathilake CJ, Ollberding NJ, Kumar R, Macaluso M, Alvarez RD, Morrow CD. Cervical microbiota associated with higher grade cervical intraepithelial neoplasia in women infected with high-risk human papillomaviruses. Cancer Prev Res (Phila). 2016;9:357–66. https://doi.org/10.1158/1940-6207.CAPR-15-0350.

    Article  CAS  Google Scholar 

  70. Norenhag J, Du J, Olovsson M, Verstraelen H, Engstrand L, Brusselaers N. The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta‐analysis. BJOG. Int J Obstet Gy. 2020;127:171–80. https://doi.org/10.1111/1471-0528.15854.

    Article  CAS  Google Scholar 

  71. Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(674):e1-9. https://doi.org/10.1016/j.cmi.2015.02.026.

    Article  Google Scholar 

  72. Lamont RF, Morgan DJ, Wilden SD, Taylor-Robinson D. Prevalence of bacterial vaginosis in women attending one of three general practices for routine cervical cytology. Int J STD AIDS. 2000;11:495–8. https://doi.org/10.1258/0956462001916371.

    Article  CAS  PubMed  Google Scholar 

  73. Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209:505–23. https://doi.org/10.1016/j.ajog.2013.05.006.

    Article  PubMed  Google Scholar 

  74. Workowski KA, Bolan GA, Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015;64:1–137. https://doi.org/10.15585/mmwr%20.rr6404a1.

  75. Curty G, de Carvalho PS, Soares MA. The role of the cervicovaginal microbiome on the genesis and as a biomarker of premalignant cervical intraepithelial neoplasia and invasive cervical cancer. Int J Mol Sci [Internet]. 2019 [cited 2021 Jan 27];21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981542/. https://doi.org/10.3390/ijms21010222.

  76. Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017;10:1310–9. https://doi.org/10.1038/mi.2016.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wei Z-T, Chen H-L, Wang C-F, Yang G-L, Han S-M, Zhang S-L. Depiction of vaginal microbiota in women with high-risk human papillomavirus infection. Front Public Health. 2021;8:587298. https://doi.org/10.3389/fpubh.2020.587298.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Machado A, Cerca N. Influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis. J Infect Dis. 2015;212:1856–61. https://doi.org/10.1093/infdis/jiv338.

    Article  CAS  PubMed  Google Scholar 

  79. Usyk M, Zolnik CP, Castle PE, Porras C, Herrero R, Gradissimo A, et al. Cervicovaginal microbiome and natural history of HPV in a longitudinal study. Silvestri G, editor. PLoS Pathog. 2020;16:e1008376. https://doi.org/10.1371/journal.ppat.1008376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Murphy K, Mitchell CM. The interplay of host immunity, environment and the risk of bacterial vaginosis and associated reproductive health outcomes. J Infect Dis. 2016;214(Suppl 1):S29-35. https://doi.org/10.1093/infdis/jiw140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meng LT, Xue Y, Yue T, Yang L, Gao L, An RF. Relationship of HPV infection and BV, VVC, TV: a clinical study based on 1 261 cases of gynecologic outpatients. Zhonghua Fu Chan Ke Za Zhi. 2016;51:730–3. https://doi.org/10.3760/cma.j.issn.0529-567X.2016.10.004.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou D, Cui Y, Wu FL, Deng WH. The change of vaginal lactobacillus in patients with high-risk human papillomavirus infection. Zhonghua Yi Xue Za Zhi. 2016;96:2006–8. https://doi.org/10.3760/cma.j.issn.0376-2491.2016.25.010.

    Article  CAS  PubMed  Google Scholar 

  83. Chen Y, Qiu X, Wang W, Li D, Wu A, Hong Z, et al. Human papillomavirus infection and cervical intraepithelial neoplasia progression are associated with increased vaginal microbiome diversity in a Chinese cohort. BMC Infect Dis. 2020;20:629. https://doi.org/10.1186/s12879-020-05324-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Godoy-Vitorino F, Romaguera J, Zhao C, Vargas-Robles D, Ortiz-Morales G, Vázquez-Sánchez F, et al. Cervicovaginal fungi and bacteria associated with cervical intraepithelial neoplasia and high-risk human papillomavirus infections in a hispanic population. Front Microbiol. 2018;9:2533. https://doi.org/10.3389/fmicb.2018.02533.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014;209:1989–99. https://doi.org/10.1093/infdis/jiu004.

    Article  CAS  PubMed  Google Scholar 

  86. Larsen AK, Nymo IH, Briquemont B, Sørensen KK, Godfroid J. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells. PLoS ONE. 2013;8:e84861. https://doi.org/10.1371/journal.pone.0084861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou Y, Wang L, Pei F, Ji M, Zhang F, Sun Y, et al. Patients with LR-HPV infection have a distinct vaginal microbiota in comparison with healthy controls. Front Cell Infect Microbiol. 2019;9:294. https://doi.org/10.3389/fcimb.2019.00294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, Téllez-Sosa J, Martínez-Barnetche J, Cortina-Ceballos B, et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS ONE. 2016;11:e0153274. https://doi.org/10.1371/journal.pone.0153274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee JE, Lee S, Lee H, Song Y-M, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS ONE. 2013;8:e63514. https://doi.org/10.1371/journal.pone.0063514.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mitra A, MacIntyre DA, Ntritsos G, Smith A, Tsilidis KK, Marchesi JR, et al. The vaginal microbiota associates with the regression of untreated cervical intraepithelial neoplasia 2 lesions. Nat Commun. 2020;11:1999. https://doi.org/10.1038/s41467-020-15856-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Caselli E, D’Accolti M, Santi E, Soffritti I, Conzadori S, Mazzacane S, et al. Vaginal microbiota and cytokine microenvironment in HPV clearance/persistence in women surgically treated for cervical intraepithelial neoplasia: an observational prospective study. Front Cell Infect Microbiol. 2020;10:540900. https://doi.org/10.3389/fcimb.2020.540900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE. 2012;7:e37818. https://doi.org/10.1371/journal.pone.0037818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV. Probiotics and immunity: provisional role for personalized diets and disease prevention. EPMA J. 2015;6:14. https://doi.org/10.1186/s13167-015-0036-0.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, et al. How do probiotics and prebiotics function at distant sites? Benef Microbes. 2017;8:521–33. https://doi.org/10.3920/BM2016.0222.

    Article  CAS  PubMed  Google Scholar 

  95. Lev-Sagie A, Goldman-Wohl D, Cohen Y, Dori-Bachash M, Leshem A, Mor U, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med. 2019;25:1500–4. https://doi.org/10.1038/s41591-019-0600-6.

    Article  CAS  PubMed  Google Scholar 

  96. Vujic G, Jajac Knez A, Despot Stefanovic V, Kuzmic VV. Efficacy of orally applied probiotic capsules for bacterial vaginosis and other vaginal infections: a double-blind, randomized, placebo-controlled study. Eur J Obstet Gynecol Reprod Biol. 2013;168:75–9. https://doi.org/10.1016/j.ejogrb.2012.12.031.

    Article  PubMed  Google Scholar 

  97. Abdelhamid AG, El-Masry SS, El-Dougdoug NK. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J. 2019;10:337–50. https://doi.org/10.1007/s13167-019-00184-z.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li Y, Yu T, Yan H, Li D, Yu T, Yuan T, et al. Vaginal microbiota and HPV infection: novel mechanistic insights and therapeutic strategies. IDR. 2020;13:1213–20. https://doi.org/10.2147/IDR.S210615.

    Article  CAS  Google Scholar 

  99. Kyrgiou M, Koliopoulos G, Martin-Hirsch P, Arbyn M, Prendiville W, Paraskevaidis E. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and meta-analysis. Lancet. 2006;367:489–98. https://doi.org/10.1016/S0140-6736(06)68181-6.

    Article  CAS  PubMed  Google Scholar 

  100. Verhoeven V, Renard N, Makar A, Van Royen P, Bogers J-P, Lardon F, et al. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. Eur J Cancer Prev. 2013;22:46–51. https://doi.org/10.1097/CEJ.0b013e328355ed23.

    Article  PubMed  Google Scholar 

  101. Palma E, Recine N, Domenici L, Giorgini M, Pierangeli A, Panici PB. Long-term Lactobacillus rhamnosus BMX 54 application to restore a balanced vaginal ecosystem: a promising solution against HPV-infection. BMC Infect Dis. 2018;18:13. https://doi.org/10.1186/s12879-017-2938-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reid G, Beuerman D, Heinemann C, Bruce AW. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol. 2001;32:37–41. https://doi.org/10.1111/j.1574-695X.2001.tb00531.x.

    Article  CAS  PubMed  Google Scholar 

  103. Morelli L, Zonenenschain D, Del Piano M, Cognein P. Utilization of the intestinal tract as a delivery system for urogenital probiotics. J Clin Gastroenterol. 2004;38:S107-110. https://doi.org/10.1097/01.mcg.0000128938.32835.98.

    Article  CAS  PubMed  Google Scholar 

  104. Homayouni A, Bastani P, Ziyadi S, Mohammad-Alizadeh-Charandabi S, Ghalibaf M, Mortazavian AM, et al. Effects of probiotics on the recurrence of bacterial vaginosis: a review. J Low Genit Tract Dis. 2014;18:79–86. https://doi.org/10.1097/LGT.0b013e31829156ec.

  105. Liwen Z, Yu W, Liang M, Kaihong X, Baojin C. A low abundance of Bifidobacterium but not Lactobacillius in the feces of Chinese children with wheezing diseases. Medicine (Baltimore). 2018;97:e12745. https://doi.org/10.1097/MD.0000000000012745.

    Article  Google Scholar 

  106. Onywera H, Williamson A-L, Ponomarenko J, Meiring TL. The penile microbiota in uncircumcised and circumcised men: relationships with HIV and human papillomavirus infections and cervicovaginal microbiota. Front Med. 2020;7:383. https://doi.org/10.3389/fmed.2020.00383.

    Article  Google Scholar 

  107. Price LB, Liu CM, Johnson KE, Aziz M, Lau MK, Bowers J, et al. The effects of circumcision on the penis microbiome. PLoS ONE. 2010;5:e8422. https://doi.org/10.1371/journal.pone.0008422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zozaya M, Ferris MJ, Siren JD, Lillis R, Myers L, Nsuami MJ, et al. Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome. 2016;4:16. https://doi.org/10.1186/s40168-016-0161-6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brusselaers N, Shrestha S, van de Wijgert J, Verstraelen H. Vaginal dysbiosis and the risk of human papillomavirus and cervical cancer: systematic review and meta-analysis. Am J Obstet Gynecol. 2019;221(9–18):e8. https://doi.org/10.1016/j.ajog.2018.12.011.

    Article  Google Scholar 

  110. Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses. 2013;5:2624–42. https://doi.org/10.3390/v5112624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, et al. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol. 2020;146:3137–54. https://doi.org/10.1007/s00432-020-03424-2.

    Article  PubMed  Google Scholar 

  112. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009;227:75–86. https://doi.org/10.1111/j.1600-065X.2008.00737.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo) [Internet]. 2018 [cited 2021 Jan 29];73. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157093/. https://doi.org/10.6061/clinics/2018/e549s.

  114. Aristizábal B, González Á. Innate immune system [Internet]. Autoimmunity: from bench to bedside [Internet]. El Rosario University Press; 2013 [cited 2021 Jan 29]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459455/.

  115. Ashrafian L, Sukhikh G, Kiselev V, Paltsev M, Drukh V, Kuznetsov I, et al. Double-blind randomized placebo-controlled multicenter clinical trial (phase IIa) on diindolylmethane’s efficacy and safety in the treatment of CIN: implications for cervical cancer prevention. EPMA J. 2015;6:25. https://doi.org/10.1186/s13167-015-0048-9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, et al. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte’s innate immune response. PLOS Pathogens. Public Library of Science; 2013;9 e1003384 https://doi.org/10.1371/journal.ppat.1003384

  117. Garcia M, Alout H, Diop F, Damour A, Bengue M, Weill M, et al. Innate immune response of primary human keratinocytes to West Nile virus infection and its modulation by mosquito saliva. Front Cell Infect Microbiol [Internet]. 2018 [cited 2021 Jan 29];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224356/. https://doi.org/10.3389/fcimb.2018.00387.

  118. Hasan U. Human papillomavirus (HPV) deregulation of Toll-like receptor 9. Oncoimmunology [Internet]. Taylor & Francis; 2014 [cited 2021 Jan 29];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935924/. https://doi.org/10.4161/onci.27257.

  119. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. 2007;178:3186–97. https://doi.org/10.4049/jimmunol.178.5.3186.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Yang H, Barnie PA, Yang P, Su Z, Chen J, et al. The expression of Toll-like receptor 8 and its relationship with VEGF and Bcl-2 in cervical cancer. Int J Med Sci. 2014;11:608–13. https://doi.org/10.7150/ijms.8428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: an update. Int J Cancer. 2018;142:224–9. https://doi.org/10.1002/ijc.31027.

    Article  CAS  PubMed  Google Scholar 

  122. Karim R, Meyers C, Backendorf C, Ludigs K, Offringa R, van Ommen GLB, et al. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One. 2011;6:e17848. https://doi.org/10.1371/journal.pone.0017848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol [Internet]. 2019 [cited 2021 Jan 29];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348254/. https://doi.org/10.3389/fimmu.2018.03176.

  124. Da Silva DM, Movius CA, Raff AB, Brand HE, Skeate JG, Wong MK, et al. Suppression of Langerhans cell activation is conserved amongst human papillomavirus α and β genotypes, but not a μ genotype. Virology. 2014;0:279–86. https://doi.org/10.1016/j.virol.2014.01.031.

    Article  CAS  Google Scholar 

  125. Jimenez-Flores R, Mendez-Cruz R, Ojeda-Ortiz J, Muñoz-Molina R, Balderas-Carrillo O, de la Luz D-S, et al. High-risk human papilloma virus infection decreases the frequency of dendritic Langerhans’ cells in the human female genital tract. Immunology. 2006;117:220–8. https://doi.org/10.1111/j.1365-2567.2005.02282.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Su Q, Igyártó B. Keratinocytes affect biology of Langerhans cells through mRNA transfer. The Journal of Immunology American Association of Immunologists. 2018;200:109.12-109.12. https://doi.org/10.1016/j.jid.2019.05.006.

    Article  CAS  Google Scholar 

  127. Jackson R, Eade S, Zehbe I. An epithelial organoid model with Langerhans cells for assessing virus-host interactions. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society. 2019;374:20180288. https://doi.org/10.1098/rstb.2018.0288.

    Article  CAS  Google Scholar 

  128. Wakabayashi R, Nakahama Y, Nguyen V, Espinoza JL. The host-microbe interplay in human papillomavirus-induced carcinogenesis. Microorganisms [Internet]. 2019 [cited 2021 Jan 30];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680694/. https://doi.org/10.3390/microorganisms7070199.

  129. Iijima N, Goodwin EC, Dimaio D, Iwasaki A. High-risk human papillomavirus E6 inhibits monocyte differentiation to Langerhans cells. Virology. 2013;444:257–62. https://doi.org/10.1016/j.virol.2013.06.020.

    Article  CAS  PubMed  Google Scholar 

  130. Zhou C, Tuong ZK, Frazer IH. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol [Internet]. Frontiers; 2019 [cited 2021 Jan 30];9. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2019.00682/full. https://doi.org/10.3389/fonc.2019.00682.

  131. Eiz-Vesper B, Schmetzer HM. Antigen-presenting cells: potential of proven und new players in immune therapies. Transfus Med Hemother. 2020;47:429–31. https://doi.org/10.1159/000512729.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tran LS, Mittal D, Mattarollo SR, Frazer IH. Interleukin-17A promotes arginase-1 production and 2,4-dinitrochlorobenzene-induced acute hyperinflammation in human papillomavirus E7 oncoprotein-expressing skin. J Innate Immun. 2015;7:392–404. https://doi.org/10.1159/000374115.

    Article  CAS  PubMed Central  Google Scholar 

  133. Hacke K, Rincon-Orozco B, Buchwalter G, Siehler SY, Wasylyk B, Wiesmüller L, et al. Regulation of MCP-1 chemokine transcription by p53. Mol Cancer. 2010;9:82. https://doi.org/10.1186/1476-4598-9-82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol. 2005;79:14852–62. https://doi.org/10.1128/JVI.79.23.14852-14862.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mittal D, Kassianos AJ, Tran LS, Bergot A-S, Gosmann C, Hofmann J, et al. Indoleamine 2,3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J Invest Dermatol. 2013;133:2686–94. https://doi.org/10.1038/jid.2013.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer [Internet]. 2019 [cited 2021 Jan 30];18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391774/. https://doi.org/10.1186/s12943-019-0956-8.

  137. Jimenez-Perez MI, Jave-Suarez LF, Ortiz-Lazareno PC, Bravo-Cuellar A, Gonzalez-Ramella O, Aguilar-Lemarroy A, et al. Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications. BMC Immunol. 2012;13:7. https://doi.org/10.1186/1471-2172-13-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu J, Chatterjee M, Schmid H, Beck S, Gawaz M. CXCL14 as an emerging immune and inflammatory modulator. J Inflamm (Lond) [Internet]. 2016 [cited 2021 Jan 30];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700668/. https://doi.org/10.1186/s12950-015-0109-9.

  139. Cicchini L, Westrich JA, Xu T, Vermeer DW, Berger JN, Clambey ET, et al. Suppression of antitumor immune responses by human papillomavirus through epigenetic downregulation of CXCL14. mBio. 2016;7. https://doi.org/10.1128/mBio.00270-16.

  140. Schaerli P, Willimann K, Ebert LM, Walz A, Moser B. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity Elsevier. 2005;23:331–42. https://doi.org/10.1016/j.immuni.2005.08.012.

    Article  CAS  Google Scholar 

  141. Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B. Monocyte selectivity and tissue localization suggests a role for breast and kidney–expressed chemokine (Brak) in macrophage development. J Exp Med. 2001;194:855–62. https://doi.org/10.1084/jem.194.6.855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yoshimura A, Muto G. TGF-β function in immune suppression. Curr Top Microbiol Immunol. 2011;350:127–47. https://doi.org/10.1007/82_2010_87.

    Article  CAS  PubMed  Google Scholar 

  143. Iancu IV, Botezatu A, Goia-Ruşanu CD, Stănescu A, Huică I, Nistor E, et al. TGF-beta signalling pathway factors in HPV-induced cervical lesions. Roum Arch Microbiol Immunol. 2010;69:113–8. ISSN 1222–3891.

  144. Stanley MA, Sterling JC. Host responses to infection with human papillomavirus. Curr Probl Dermatol. 2014;45:58–74. https://doi.org/10.1159/000355964.

    Article  PubMed  Google Scholar 

  145. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125:S33-40. https://doi.org/10.1016/j.jaci.2009.09.017.

    Article  PubMed  Google Scholar 

  146. Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25:215–22. https://doi.org/10.1128/CMR.05028-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ambagala APN, Solheim JC, Srikumaran S. Viral interference with MHC class I antigen presentation pathway: the battle continues. Vet Immunol Immunopathol. 2005;107:1–15. https://doi.org/10.1016/j.vetimm.2005.04.006.

    Article  CAS  PubMed  Google Scholar 

  148. Clark KT, Trimble CL. Current status of therapeutic HPV vaccines. Gynecol Oncol. 2020;156:503–10. https://doi.org/10.1016/j.ygyno.2019.12.017.

    Article  CAS  PubMed  Google Scholar 

  149. Beachler DC, Jenkins G, Safaeian M, Kreimer AR, Wentzensen N. Natural acquired immunity against subsequent genital human papillomavirus infection: a systematic review and meta-analysis. J Infect Dis. 2016;213:1444–54. https://doi.org/10.1093/infdis/jiv753.

    Article  CAS  PubMed  Google Scholar 

  150. Song D, Li H, Li H, Dai J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer (Review). Oncol Lett Spandidos Publications. 2015;10:600–6. https://doi.org/10.3892/ol.2015.3295.

    Article  CAS  Google Scholar 

  151. Beutler BA. TLRs and innate immunity. Blood. 2009;113:1399–407. https://doi.org/10.1182/blood-2008-07-019307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. Nature Publishing Group. 2007;449:819–26. https://doi.org/10.1038/nature06246.

    Article  CAS  Google Scholar 

  153. Sato A, Iwasaki A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc Natl Acad Sci U S A. 2004;101:16274–9. https://doi.org/10.1073/pnas.0406268101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang W, Song Y, Lu Y-L, Sun J-Z, Wang H-W. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology. 2013;139:513–22. https://doi.org/10.1111/imm.12101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sheu BC, Chang WC, Lin HH, Chow SN, Huang SC. Immune concept of human papillomaviruses and related antigens in local cancer milieu of human cervical neoplasia. J Obstet Gynaecol Res. 2007;33:103–13. https://doi.org/10.1111/j.1447-0756.2007.00492.x.

    Article  CAS  PubMed  Google Scholar 

  156. Scott ME, Shvetsov YB, Thompson PJ, Hernandez BY, Zhu X, Wilkens LR, et al. Cervical cytokines and clearance of incident human papillomavirus infection: Hawaii HPV cohort study. Int J Cancer. 2013;133:1187–96. https://doi.org/10.1002/ijc.28119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Peghini BC, Abdalla DR, Barcelos ACM, Teodoro L das GVL, Murta EFC, Michelin MA. Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia. Hum Immunol. 2012;73:920–6. https://doi.org/10.1016/j.humimm.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  158. Zhou Q, Zhu K, Cheng H. Toll-like receptors in human papillomavirus infection. Arch Immunol Ther Exp (Warsz). 2013;61:203–15. https://doi.org/10.1007/s00005-013-0220-7.

    Article  CAS  Google Scholar 

  159. Woo YL, Sterling J, Damay I, Coleman N, Crawford R, van der Burg SH, et al. Characterising the local immune responses in cervical intraepithelial neoplasia: a cross-sectional and longitudinal analysis. BJOG. 2008;115:1616–21; discussion 1621–1622. https://doi.org/10.1111/j.1471-0528.2008.01936.x.

  160. Jung AC, Guihard S, Krugell S, Ledrappier S, Brochot A, Dalstein V, et al. CD8-alpha T-cell infiltration in human papillomavirus-related oropharyngeal carcinoma correlates with improved patient prognosis. Int J Cancer. 2013;132:E26-36. https://doi.org/10.1002/ijc.27776.

    Article  CAS  PubMed  Google Scholar 

  161. Skeate JG, Da Silva DM, Chavez-Juan E, Anand S, Nuccitelli R, Kast WM. Nano-pulse stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response. PLoS ONE. 2018;13:e0191311. https://doi.org/10.1371/journal.pone.0191311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee S-J, Yang A, Wu T-C, Hung C-F. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research. J Gynecol Oncol [Internet]. 2016 [cited 2021 Feb 13];27. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944018/. https://doi.org/10.3802/jgo.2016.27.e51.

  163. Kovachev SM. Immunotherapy in patients with local HPV infection and high-grade squamous intraepithelial lesion following uterine cervical conization. Immunopharmacol Immunotoxicol. 2020;42:314–8. https://doi.org/10.1080/08923973.2020.1765374.

    Article  CAS  PubMed  Google Scholar 

  164. Rumfield CS, Pellom ST, Ii YMM, Schlom J, Jochems C. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. J Immunother Cancer BMJ Specialist Journals. 2020;8:e000612. https://doi.org/10.1136/jitc-2020-000612.

    Article  Google Scholar 

  165. Van de Wall S, Nijman HW, Daemen T. HPV-specific immunotherapy: key role for immunomodulators. Anticancer Agents Med Chem. 2014;14:265–79. https://doi.org/10.2174/187152061402140128163306.

    Article  CAS  PubMed  Google Scholar 

  166. Smola S. Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy. Viruses. 2017;9. https://doi.org/10.3390/v9090254.

  167. Cohen AC, Roane BM, Leath CA. Novel therapeutics for recurrent cervical cancer: moving towards personalized therapy. Drugs. 2020;80:217–27. https://doi.org/10.1007/s40265-019-01249-z.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Tumer G, Simpson B, Roberts TK. Genetics, human major histocompatibility complex (MHC). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 [cited 2021 Feb 12]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK538218/.

  169. Mak TW, Saunders ME, Jett BD, editors. Chapter 6 - The major histocompatibility complex. Primer to the Immune Response (Second Edition) [Internet]. Boston: Academic Cell; 2014 [cited 2021 Feb 12]. p. 143–59.Available from: https://www.sciencedirect.com/science/article/pii/B9780123852458000066. ISBN 978–0–12–385245–8.

  170. Paaso A, Jaakola A, Syrjänen S, Louvanto K. From HPV infection to lesion progression: the role of HLA alleles and host immunity. Acta Cytol. 2019;63:148–58. https://doi.org/10.1159/000494985.

    Article  CAS  PubMed  Google Scholar 

  171. Zheng Z, He Q, An L, Li D, Wang N, Wang L, et al. HLA Class II alleles and association with HPV Infection prevalence in high-risk HPV-positive Han women in southern China. Med Mal Infect. 2020. https://doi.org/10.1016/j.medmal.2020.09.006.

    Article  Google Scholar 

  172. Gokhale P, Mania-Pramanik J, Sonawani A, Idicula-Thomas S, Kerkar S, Tongaonkar H, et al. Cervical cancer in Indian women reveals contrasting association among common sub-family of HLA class I alleles. Immunogenetics. 2014;66:683–91. https://doi.org/10.1007/s00251-014-0805-2.

    Article  CAS  PubMed  Google Scholar 

  173. Wang SS, Hildesheim A, Gao X, Schiffman M, Herrero R, Bratti MC, et al. Comprehensive analysis of human leukocyte antigen class I alleles and cervical neoplasia in 3 epidemiologic studies. J Infect Dis. 2002;186:598–605. https://doi.org/10.1086/342295.

    Article  CAS  PubMed  Google Scholar 

  174. Leo PJ, Madeleine MM, Wang S, Schwartz SM, Newell F, Pettersson-Kymmer U, et al. Defining the genetic susceptibility to cervical neoplasia—a genome-wide association study. PLOS Genetics Public Library of Science. 2017;13:e1006866. https://doi.org/10.1371/journal.pgen.1006866.

    Article  CAS  Google Scholar 

  175. Ivansson EL, Magnusson JJ, Magnusson PKE, Erlich HA, Gyllensten UB. MHC loci affecting cervical cancer risk: distinguishing the effects of HLA-DQB1 and non-HLA genes TNF, LTA, TAP1 and TAP2. Genes Immun. 2008;9:613–23. https://doi.org/10.1038/gene.2008.58.

    Article  CAS  PubMed  Google Scholar 

  176. Chan PKS, Cheung JLK, Cheung T-H, Lin C, Tam AOY, Chan DPC, et al. HLA-B alleles, high-risk HPV infection and risk for cervical neoplasia in southern Chinese women. Int J Cancer. 2006;118:1430–5. https://doi.org/10.1002/ijc.21528.

    Article  CAS  PubMed  Google Scholar 

  177. Hu JM, Sun Q, Li L, Liu CX, Chen YZ, Zou H, et al. Human leukocyte antigen-DRB1*1501 and DQB1*0602 alleles are cervical cancer protective factors among Uighur and Han people in Xinjiang, China. Int J Clin Exp Pathol. 2014;7:6165–71.

  178. Del Río-Ospina L, Camargo M, Soto-De León SC, Sánchez R, Moreno-Pérez DA, Patarroyo ME, et al. Identifying the HLA DRB1-DQB1 molecules and predicting epitopes associated with high-risk HPV infection clearance and redetection. Sci Rep [Internet]. 2020 [cited 2021 Feb 12];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190668/. https://doi.org/10.1038/s41598-020-64268-x.

  179. Bhaskaran M, Murali SV, Rajaram B, Krishnasamy S, Devasena CS, Pathak A, et al. Association of HLA-A, -B, DRB, and DQB alleles with persistent HPV-16 infection in women from Tamil Nadu. India Viral Immunol. 2019;32:430–41. https://doi.org/10.1089/vim.2019.0094.

    Article  CAS  PubMed  Google Scholar 

  180. Franciosi JR, Gelmini GF, Roxo VS, Carvalho NSde, Bicalho MdaG. Is there a role played by HLA-E, if any, in HPV immune evasion? Scand J Immunol. 2020;91:e12850. https://doi.org/10.1111/sji.12850.

    Article  PubMed  Google Scholar 

  181. Aggarwal R, Sharma M, Mangat N, Suri V, Bhatia T, Kumar P, et al. Understanding HLA-G driven journey from HPV infection to cancer cervix: adding missing pieces to the jigsaw puzzle. J Reprod Immunol. 2020;142:103205. https://doi.org/10.1016/j.jri.2020.103205.

    Article  CAS  PubMed  Google Scholar 

  182. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY. Specific properties of probiotic strains: relevance and benefits for the host. EPMA J. 2018;9:205–23. https://doi.org/10.1007/s13167-018-0132-z.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Qingqing B, Jie Z, Songben Q, Juan C, Lei Z, Mu X. Cervicovaginal microbiota dysbiosis correlates with HPV persistent infection. Microb Pathog. 2020;104617. https://doi.org/10.1016/j.micpath.2020.104617.

  184. Lazarenko LM, Nikitina OE, Nikitin EV, Demchenko OM, Kovtonyuk GV, Ganova LO, et al. Development of biomarker panel to predict, prevent and create treatments tailored to the persons with human papillomavirus-induced cervical precancerous lesions. EPMA J. 2014;5:1. https://doi.org/10.1186/1878-5085-5-1.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10:365–81. https://doi.org/10.1007/s13167-019-00194-x.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Łaniewski P, Cui H, Roe DJ, Barnes D, Goulder A, Monk BJ, et al. Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical carcinogenesis. Sci Rep [Internet]. 2019 [cited 2021 Jan 27];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517407/. https://doi.org/10.1038/s41598-019-43849-5.

  187. Łaniewski P, Barnes D, Goulder A, Cui H, Roe DJ, Chase DM, et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci Rep [Internet]. 2018 [cited 2021 Jan 27];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954126/. https://doi.org/10.1038/s41598-018-25879-7.

  188. Hu T, Yang P, Zhu H, Chen X, Xie X, Yang M, et al. Accumulation of invariant NKT cells with increased IFN-γ production in persistent high-risk HPV-infected high-grade cervical intraepithelial neoplasia. Diagn Pathol. 2015;10:20. https://doi.org/10.1186/s13000-015-0254-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gutiérrez-Hoya A, Zerecero-Carreón O, Valle-Mendiola A, Moreno-Lafont M, López-Santiago R, Weiss-Steider B, et al. Cervical cancer cells express markers associated with immunosurveillance. J Immunol Res. 2019;2019:1242979. https://doi.org/10.1155/2019/1242979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Barros MR, de Melo CML, Barros MLCMGR, de Cássia Pereira de Lima R, de Freitas AC, Venuti A. Activities of stromal and immune cells in HPV-related cancers. Journal of Experimental & Clinical Cancer Research. 2018;37:137. https://doi.org/10.1186/s13046-018-0802-7.

  191. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4:e609-616. https://doi.org/10.1016/S2214-109X(16)30143-7.

    Article  PubMed  Google Scholar 

  192. Vyshenska D, Lam KC, Shulzhenko N, Morgun A. Interplay between viruses and bacterial microbiota in cancer development. Semin Immunol. 2017;32:14–24. https://doi.org/10.1016/j.smim.2017.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lewis FMT, Bernstein KT, Aral SO. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet Gynecol. 2017;129:643–54. https://doi.org/10.1097/AOG.0000000000001932.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Wilkinson EM, Łaniewski P, Herbst-Kralovetz MM, Brotman RM. Personal and clinical vaginal lubricants: impact on local vaginal microenvironment and implications for epithelial cell host response and barrier function. J Infect Dis. 2019;220:2009–18. https://doi.org/10.1093/infdis/jiz412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mändar R, Punab M, Borovkova N, Lapp E, Kiiker R, Korrovits P, et al. Complementary seminovaginal microbiome in couples. Res Microbiol. 2015;166:440–7. https://doi.org/10.1016/j.resmic.2015.03.009.

    Article  PubMed  Google Scholar 

  196. Nelson DE, Van Der Pol B, Dong Q, Revanna KV, Fan B, Easwaran S, et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE. 2010;5:e14116. https://doi.org/10.1371/journal.pone.0014116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nelson DE, Dong Q, Van der Pol B, Toh E, Fan B, Katz BP, et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE. 2012;7:e36298. https://doi.org/10.1371/journal.pone.0036298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5:6. https://doi.org/10.1186/1878-5085-5-6.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hu R, Wang X, Zhan X. Multi-parameter systematic strategies for predictive, preventive and personalised medicine in cancer. EPMA J. 2013;4:2. https://doi.org/10.1186/1878-5085-4-2.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102. https://doi.org/10.1007/s13167-018-0128-8.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Yu JC, Khodadadi H, Baban B. Innate immunity and oral microbiome: a personalized, predictive, and preventive approach to the management of oral diseases. EPMA J. 2019;10:43–50. https://doi.org/10.1007/s13167-019-00163-4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Open Access funding was enabled and organized by Projekt DEAL. This work was supported by the Grant Agency of the Ministry of Education of the Slovak Republic under contract no. 1/0124/17, the Slovak Research and Development Agency under contract no. APVV-16–0021, the Ministry of Health grant no. 2018/20-UKMT-16, and also by the project molecular diagnosis of cervical cancer, ITMS: 26220220113 supported by the Operational Programme Research and Innovation funded by the ERDF. D.B. was supported by a National Priorities Research Program grant (NPRP 11S-1214–170101) from the Qatar National Research Fund (QNRF, a member of Qatar Foundation).

Author information

Authors and Affiliations

Authors

Contributions

E.K. was responsible for the paper concepts, draft, and PPPM-related contents. The manuscript was drafted by E.K., A.L., M.S., L.K., V.H., T.R, E.K., and T.P.

D.B., K.Z., P.K., and K.B. critically revised the manuscript. The tables were created by A.L., M.S., and L.K. Figures were prepared by M.S. and E.K.

P.K., D.B., and K.B. provided a skilled assistance and supervised the overall preparation of the manuscript. K.Z. and D.B. were responsible for English corrections.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kamil Biringer.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudela, E., Liskova, A., Samec, M. et al. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA Journal 12, 199–220 (2021). https://doi.org/10.1007/s13167-021-00244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-021-00244-3

Keywords

Navigation