Skip to main content
Log in

Machine Learning Modeling Techniques for Forecasting the Trophic Level in a Restored South Mediterranean Lagoon Using Chlorophyll-a

  • Wetlands in the Developing World
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

An Artificial Neural Network (ANN), a Machine Learning (ML) modeling approach is proposed to predict the ecological state of the North Lagoon of Tunis, a shallow restored Mediterranean coastal ecosystem. A Nonlinear Auto Regressive with exogenous input (NARX) neural network model was fitted to predict Chlorophyll-a (Chl-a) concentrations in the North Lagoon of Tunis as an eutrophication indicator. The modeling is based on approximately three decades of monitoring water quality data (from January 1989 to April 2018) to train, validate and test the NARX model. The most relevant predictor variables used in this model were those having a high permutation importance ranking with Random Forest (RF) model, which simplified the structure of the network, resulting in a more accurate and efficient procedure. Those predictor variables are secchi depth, and dissolved oxygen. Various model scenarios with different NARX architectures were tested for Chl-a prediction. To verify the model performances, the trained models were applied to field monitoring data. Results indicated that the developed NARX model can predict Chl-a concentrations in the North Lagoon of Tunis with high accuracy (R = 0.79; MSE = 0.31). In addition, results showed that the NARX model generally performed better than multivariate linear regression (MVLR). This approach could provide a quick assessment of Chl-a variations for lagoon management and eco-restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data provided by the Al-Buhaira Invest company to the first author are acknowledged.

Code Availability

Neural Net Time Series Toolbox and Regression Learner Toolbox applications were used in the MATLAB® software (version 9.3.0.948333 (R2017b), The Mathworks, MA, USA).

References

  • Abba SI, Hadi SJ, Abdullahi J (2017) River water modelling prediction using multi-linear regression, artificial neural network and adaptive neuro-fuzzy inference system techniques. Procedia Computer Science 120:75–82. https://doi.org/10.1016/j.procs.2017.11.212

    Article  Google Scholar 

  • APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

  • Aqil M, Kita I, Yano A, Nishiyama S (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology 337:22–34. https://doi.org/10.1016/j.jhydrol.2007.01.013

    Article  Google Scholar 

  • Armi Z, Trabelsi E, Turki S, Ben Maïz N, Mahmoudi E (2012) Composition and dynamics of potentially toxic dinoflagellates in a shallow Mediterranean lagoon. Oceanological and Hydrobiological Studies 41(3):25–35

    Google Scholar 

  • ASCE Task Committee (2000) Artificial neural networks in hydrology I. Preliminary concepts. Journal of Hydrology and Engineering 5:115–123. https://doi.org/10.1061/(asce)1084-0699(2000)5:2(115)

  • Babovic V, Sannasiraj SA, Soon Chan E (2005) Error correction of a predictive ocean wave model using local model approximation. Journal of Marine Systems 53:1–17. https://doi.org/10.1016/j.jmarsys.2004.05.028

    Article  Google Scholar 

  • Barnes RSK (1980) Coastal lagoons: The natural history of a neglected habitat. Cambridge University Press, Cambridge

    Google Scholar 

  • Basset A, Elliott M, West RJ, Wilson JG, Estuarine (2013) Estuarine and lagoon biodiversity and their natural goods and services. Estuarine, Coastal and Shelf Science 132:1–4. https://doi.org/10.1016/j.ecss.2013.05.018

    Article  CAS  Google Scholar 

  • Béjaoui B, Armi Z, Ottaviani., Barelli E, Gargouri-Ellouz E, Chérif R, Turki S, Solidoro C, Aleya L (2016) Random forest model and TRIX used in combination to assess and diagnose the trophic status of Bizerte Lagoon, southern Mediterranean. Ecological Indicators 7:293–301. https://doi.org/10.1016/j.ecolind.2016.07.010

    Article  Google Scholar 

  • Béjaoui B, Ottaviani E, Barelli E, Ziadi B, Dhib A, Lavoie M, Gianluca C, Turki S, Solidoro C, Aleya L (2018) Machine learning predictions of trophic status indicators and plankton dynamic in coastal lagoons. Ecological Indicators 95:765–774. https://doi.org/10.1016/j.ecolind.2018.08.041

    Article  CAS  Google Scholar 

  • Ben Charrada R (1992) Le lac de Tunis après les aménagements. Paramètres physicochimiques de l’eau et relation avec la croissance des macroalgues. Marine Life 1:29–44

  • Bowden GJ, Nixon JB, Dandy GC, Maier HR, Holmes M (2006) Forecasting chlorine residuals in a water distribution system using a general regression neural network. Mathematical and Computer Modelling 44:469–484. https://doi.org/10.1016/j.mcm.2006.01.006

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Machine Learning 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Charulatha G, Srinivasalu S, Uma Maheswari O et al (2017) Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arabian Journal of Geosciences 10:128. https://doi.org/10.1007/s12517-017-2867-6

    Article  Google Scholar 

  • Chen Q, Guan T, Yun L, Li R, Recknagel F (2015) Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials. Harmful Algae 43:58–65. https://doi.org/10.1016/j.hal.2015.01.002

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210:223–253. https://doi.org/10.3354/meps210223

    Article  CAS  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792. https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309:229–240. https://doi.org/10.1016/j.jhydrol.2004.12.001

    Article  Google Scholar 

  • De Casabianca ML, Samson-Kechacha FL, Bone C (1991) Etude spatiotemporelle des sels nutritifs et des principales variables hydrobiologiques dans une lagune méditerranéenne: le lac Mellah (Algérie). Mesogée 51:15–23

    Google Scholar 

  • de Jonge VN, Elliott M, Orive E (2002) Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia (incorporating JAQU) 475/476:1–19. https://doi.org/10.1023/A:1020366418295

    Article  Google Scholar 

  • Derolez V, Soudant D, Malet N, Chiantella C, Richard M, Abadie E, Aliaume C, Bec B (2020) Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuarine, Coastal and Shelf Science 241:106 810. https://doi.org/10.1016/j.ecss.2020.106810

    Article  Google Scholar 

  • Dhib A, Denis M, Barani A, Turki S, Aleya L (2016) Ultra- and microplankton assemblages as indicators of trophic status in a Mediterranean lagoon. Ecological Indicator 64:59–71

    Article  CAS  Google Scholar 

  • Fogelman S, Zhao H, Blumenstein M, Zhang S (2006) Estimation of oxygen demand levels using UV-Vis spectroscopy and artificial neural networks as an effective tool for real-time, wastewater treatment control. In: Proceedings of the 1st Australian Young Water Professionals Conference, Sydney, Australia

  • Frolov S, Rayan JP, Chavez FP (2012) Predicting eutrophic-depth-integrated chlorophyll-a from discrete-depth and satellite-observable chlorophyll-a off central California. Journal of Geophysical Research 117:C05042. https://doi.org/10.1029/2011JC007322

    Article  CAS  Google Scholar 

  • García-Ayllón S (2017) Diagnosis of complex coastal ecological systems: Environmental GIS analysis of a highly stressed Mediterranean lagoon through spatiotemporal indicators. Ecological Indicators 83:451–462. https://doi.org/10.1016/j.ecolind.2017.08.015

    Article  Google Scholar 

  • Harbridge W, Pilkey OH, Whaling P, Swetland P (1976) Sedimentation in the lake of Tunis: a lagoon strongly influenced by man. Environmental Geology 1:215–225. https://doi.org/10.1007/bf02407508

    Article  CAS  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall International Editions Series, London

    Google Scholar 

  • He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology 509:379–386. https://doi.org/10.1016/j.jhydrol.2013.11.054

    Article  Google Scholar 

  • Huang J, Gao J, Zhang Y (2015) Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of lake Poyang, China. Limnology 16:179–191. https://doi.org/10.1007/s10201-015-0454-7

    Article  Google Scholar 

  • IOC SCOR, IAPSO (2010) The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp

  • Jimeno-Sáez P, Senent-Aparicio J, Pérez-Sánchez J, Pulido-Velazquez DA (2018) Comparison of SWAT and ANN Models for daily runoff simulation in different climatic zones of Peninsular Spain. Water 10:192

    Article  Google Scholar 

  • Jimeno-Sáez P, Senent-Aparicio JM, Cecilia J, Pérez-Sánchez J (2020) Using Machine-learning algorithms for eutrophication modeling: case study of Mar Menor lagoon (Spain). International Journal of Environmental Research and Public Health 17:1189. https://doi.org/10.3390/ijerph17041189

    Article  PubMed Central  Google Scholar 

  • Kalaji HM, Sytar O, Brestic M, Samborska IA, Cetner MD, Carpentier C (2016) Risk assessment of urban lake water quality based on in situ cyanobacterial and total chlorophyll-a monitoring. Polish Journal of Environmental Studies 25(2):655–661. https://doi.org/10.15244/pjoes/60895

    Article  CAS  Google Scholar 

  • Keller S, Maier PM, Riese FM, Norra S, Holbach A, Börsig N, Wilhelms A, Moldaenke C, Zaake A, Hinz S (2018) Hyperspectral data and machine learning for estimating CDOM, chlorophyll a, diatoms, green algae and turbidity. International Journal of Environmental Research and Public Health 15:1881

    Article  Google Scholar 

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial Intelligence 97(1–2):273–324

    Article  Google Scholar 

  • Kuo JT, Hsieh MH, Lung WS, She N (2007) Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling 200:171–177

    Article  Google Scholar 

  • Lee JHW, Huang Y, Dickmen M, Jayawardena AW (2003) Neural network modelling of coastal algal blooms. Ecological Modelling 159:179–201. https://doi.org/10.1016/S0304-3800(02)00281-8

    Article  CAS  Google Scholar 

  • Li X, Sha J, Wang ZL (2017) Chlorophyll-A Prediction of lakes with different water quality patterns in China based on hybrid neural networks. Water 9:524

    Article  Google Scholar 

  • Lin T, Horne BG, Tino P, Giles CL (1996) Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks 7(6):1329–1338. https://doi.org/10.1109/72.548162

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments by spectrophotometric equations. Limnology and Oceanography 12:34–346

    Article  Google Scholar 

  • Lu F, Chen Z, Liu W, Shao H (2016) Modeling chlorophyll-a concentrations using an artificial neural network for precisely eco-restoring lake basin. Ecological Engineering 95:422–429. https://doi.org/10.1016/j.ecoleng.2016.06.072

    Article  Google Scholar 

  • Maier HR, Jain A, Dandy GC, Sudheer K (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling and Software 25:891–909. https://doi.org/10.1016/j.envsoft.2010.02.003

    Article  Google Scholar 

  • Mc Quaid N, Zamyadi A, Prevost M, Bird DF, Dorner S (2011) Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. Journal of Environmental Monitoring 13:455–463. https://doi.org/10.1039/c0em00163e

    Article  CAS  Google Scholar 

  • Mdaini Z, El Gafsi M, Tremblay J, Pharand P, Gagné JP (2019) Spatio-temporal variability of biomarker responses and lipid composition of Marphysasanguinea, Montagu (1813) in the anthropic impacted lagoon of Tunis. Marine Pollution Bulletin 144:275–286. https://doi.org/10.1016/j.marpolbul.2019.04.065

    Article  CAS  PubMed  Google Scholar 

  • Menendez M, Martınez M, Comın FA (2001) A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. Journal of Experimental Marine Biology and Ecology 256:123–136

    Article  CAS  Google Scholar 

  • Mitchell MW (2011) Bias of the random forest Out-of-Bag (OOB) error for certain input parameters. Open Journal of Statistics 1:205–211. https://doi.org/10.4236/ojs.2011.13024

    Article  Google Scholar 

  • Mjalli FS, Al-Asheh S, Alfadala HE (2006) Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management 83:329–338. https://doi.org/10.1016/j.jenvman.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  • Mooney H, Larigauderie A, Cesario M, Elmquist T, Hoegh-Guldberg O, Lavorel S, Mace GM, Palmer M, Scholes R, Yahara T (2009) Biodiversity, climate change, and ecosystem services. Current Opinion in Environment Sustainability 1:46–54. https://doi.org/10.1016/J.COSUST.2009.07.006

    Article  Google Scholar 

  • Motoda H, Liu H (2002) Feature selection, extraction and construction. Towards the foundation of data mining workshop. In: Proceedings of the Sixth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’02), Taipei, Taiwan; pp 67–72

  • Mulia IE, Tay H, Roopsekhar K, Tkalich P (2013) Hybrid ANN–GA model for predicting turbidity and chlorophyll a concentrations. Journal of Hydro-Environmental Research 7:279–299. https://doi.org/10.1016/j.jher.2013.04.003

    Article  Google Scholar 

  • Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neuro fuzzy model. Water Resources Research 41:2517–2530. https://doi.org/10.1029/2004WR003562

    Article  Google Scholar 

  • Nazeer M, Wong MS, Nichol JE (2017) A new approach for the estimation of phytoplankton cell counts associated with algal blooms. Science of the Total Environment 590–591:125–183. https://doi.org/10.1016/j.scitotenv.2017.02.182

    Article  CAS  Google Scholar 

  • Newton A, Icely J, Cristina S et al (2014) An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine, Coastal and Shelf Science 140:95–122. https://doi.org/10.1016/J.ECSS.2013.05.023

    Article  Google Scholar 

  • Newton A, Brito AC, Icely JD et al (2018) Assessing, quantifying and valuing the ecosystem services of coastal lagoons. Journal for Nature Conservation 44:50–56. https://doi.org/10.1016/j.jnc.2018.02.009

    Article  Google Scholar 

  • Nguyen VD, Tan RR, Brondial Y, Fuchino T (2007) Prediction of vapor-liquid equilibrium data for ternary systems using artificial neural networks. Fluid Phase Equilibria 254:188–197

    Article  CAS  Google Scholar 

  • Palani S, Liong SY, Tkalich P (2008) An ANN application for water quality forecasting. Marine Pollution Bulletin 56:1586–1597

    Article  CAS  Google Scholar 

  • Park Y, Cho KH, Park J, Cha SM, Kim JH (2015) Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Science of the Total Environment 502:31–41. https://doi.org/10.1016/j.scitotenv.2014.09.005

    Article  CAS  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford Oxfordshire

    Google Scholar 

  • Phillips G, Pietiläinen O, Carvalho L et al (2008) Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42:213–226. https://doi.org/10.1007/s10452-008-9180-0

    Article  CAS  Google Scholar 

  • Rajaee T, Ebrahim H, Nourani F (2019) A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology 572:336–351. https://doi.org/10.1016/j.jhydrol.2018.12.037

    Article  Google Scholar 

  • Rezgui A, Maiz N, Moussa M (2008) Fonctionnement hydrodynamique et écologique du Lac Nord de Tunis par modélisation numérique. Revue des Sciences de l’Eau 21:349–361. https://doi.org/10.7202/018781ar

    Article  Google Scholar 

  • Robledano F, Esteve MA, Martínez-Fernández J, Farinós P (2011) Determinants of wintering waterbird changes in a Mediterranean coastal lagoon affected by eutrophication. Ecological Indicators 11:395–406. https://doi.org/10.1016/j.ecolind.2010.06.010

    Article  Google Scholar 

  • Samarasinghe S (2007) Neural networks for applied sciences and engineering. Auerbach Publications, New York

    Google Scholar 

  • Schramm W (1999) Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. Journal of Applied Phycology 11:69–78

    Article  Google Scholar 

  • Shili A (1995) Contribution à l’étude de Ruppia dans le Lac Nord de Tunis. Mémoire de Diplôme des Etudes Approfondies en biologie marine et océanographie, Faculté des Sciences de Tunis, p 1-128

  • Souchu P, Bec B, Smith VH, Laugier T, Fiandrino A, Benau L, Orsoni V, Collos Y, Vaquer A (2010) Patterns in nutrient limitation and chlorophyll-a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Canadian Journal of Fisheries and Aquatic Sciences 67:743–753. https://doi.org/10.1139/F10-018

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa, Bulletin 167. 1968

  • Su J, Wang X, Zhao S, Chen B, Li C, Yang Z (2015) A structurally simplified hybrid model of genetic algorithm and support vector machine for prediction of Chlorophyll a in reservoirs. Water 7(4):1610–1627. https://doi.org/10.3390/w7041610

    Article  CAS  Google Scholar 

  • Tian W, Liao Z, Zhang J (2017) An optimization of artificial neural network model for predicting chlorophyll dynamics. Ecological Modelling 364:42–52. https://doi.org/10.1016/j.ecolmodel.2017.09.013

    Article  CAS  Google Scholar 

  • Trabelsi-Bahri EL, Armi Z, Trabelsi-Annabi N, Shili A, Ben Maiz N (2013) Water quality variables as indicators in the restoration impact assessment of the north lagoon of Tunis, South Mediterranean. Journal of Sea Research 79:12–19. https://doi.org/10.1016/j.seares.2013.01.003

    Article  Google Scholar 

  • Van Berk H, Oostinga H (1992) North Lake of Tunis and its shores: restoration and development. Terra et Aqua 49:23–32

    Google Scholar 

  • Viaroli P, Bartoli M, Giordani G, Naldi M (2008) Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat Conserv Mar Freshw Ecosyst 18:105–117. https://doi.org/10.1002/aqc

    Article  Google Scholar 

  • Wallace J, Champagne P, Hall G (2016) Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. Environmental Science: Water Research & Technology 2:1032–1040. https://doi.org/10.1039/C6EW00202A

    Article  CAS  Google Scholar 

  • Watzin MC, Miller EB, Shambaugh AD, Kreider MA (2006) Application of the WHO alert level framework to cyanobacterial monitoring of Lake Champlain, Vermont. Environmental Toxicology 21:278–288. https://doi.org/10.1002/tox.20181

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Sugiura N, Maekawa T (2001) Use of artificial neural network in the prediction of algal blooms. Water Research 35:2022–2028

    Article  CAS  Google Scholar 

  • Were K, Bui DT, Dick ØB, Singh BR (2015) A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 52:394–403. https://doi.org/10.1016/j.ecolind.2014.12.028

    Article  CAS  Google Scholar 

  • Xu G, Schwarz P, Yang H (2019) Determining China’s CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis. Energy Policy 128:752–762. https://doi.org/10.1016/j.enpol.2019.01.058

    Article  Google Scholar 

  • Zaldívar JM, Cardoso AC, Viaroli P, Wit RD, Ibañez C, Reizopoulou S, Razinkovas A, Basset A, Holmer M, Murray N (2008) Eutrophication in transitional waters: an overview. Transitional Waters Monographs 1:1–78. https://doi.org/10.1285/i18252273v2n1p1

    Article  Google Scholar 

  • Zang C, Huang S, Wu M et al (2010) Comparison of relationships between ph, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air, and Soil Pollution 219:157–174. https://doi.org/10.1007/s11270-010-0695-3

    Article  CAS  Google Scholar 

  • Zhang WZ, Wang H, Chai F, Qiu G (2016) Physical drivers of chlorophyll variability in the open South China Sea. Journal of Geophysical Research Oceans 121:7123–7140. https://doi.org/10.1002/2016JC011983

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Al-Buhaira Invest company for providing the first author with the data.

Funding

No funding has been provided. However, the field work and laboratory analyses were a part of an institutional activity (Al-Buhaira Invest company).

Author information

Authors and Affiliations

Authors

Contributions

NBH wrote the paper, collected data, conceived, designed and performed the analysis. CG helped in the correction of the paper and contributed in the designing of the analysis. HC helped in conceiving and the designing of the analysis and was a major contributor in writing the manuscript. NBM provided a big sequence of the monthly field investigation data. VG contributed in implementing and working with the software. AS helped in the supervision of this work and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nadia Ben Hadid.

Ethics declarations

Conflicts of Interest/ Competing Interests

No conflict of interest associated with this publication.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable. 

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Wetlands in the Developing World.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadid, N.B., Goyet, C., Chaar, H. et al. Machine Learning Modeling Techniques for Forecasting the Trophic Level in a Restored South Mediterranean Lagoon Using Chlorophyll-a. Wetlands 41, 111 (2021). https://doi.org/10.1007/s13157-021-01479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-021-01479-6

Keywords

Navigation