Skip to main content
Log in

Factors Influencing Removal of Sewage Nitrogen Through Denitrification in Mangrove Soils

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Mangrove forests as a coastal ecosystem can remove N in sewage effluent through the denitrification in mangrove soils. This research was designed to evaluate effects of temperature, salinity, nitrate, and organic carbon (OC) on denitrification enzyme activity (DEA). The test was conducted using an acetylene inhibition method in controlled laboratory conditions. Results showed potential DEA was lowest in soil collected from the site with lowest amount of soil OC and total nitrogen. With increased soil temperature (15–25 °C), the DEA was enhanced by 2.5–5 times. Soil potential DEA was negatively correlated to salinity (0–60 psu). The potential DEA at the highest experimental salinity (60 psu) was still 3 times higher than the field DEA, implying that salinity has less effect on soil denitrification in the field. The potential DEA was stimulated by labile OC such as glucose and sucrose, but it was not affected by the addition of lactose, acetate and mannitol. Overall, this study showed that mangrove forest soils can reach maximum rate of treating NO3 from sewage effluent if the inflow NO3 concentration is < 3 mM. The treatment efficiency of NO3 appears to vary, depending on availability of labile OC, soil redox, and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addy K, Gold A, Nowicki B, McKenna J, Stolt M, Groffman P (2005) Denitrification capacity in a subterranean estuary below a Rhode Island fringing salt marsh. Estuaries 28:896–908. doi:10.1007/bf02696018

    Article  CAS  Google Scholar 

  • Ambus P (1993) Control of denitrification enzyme-activity in a streamside soil. Fems Microbiology Ecology 102:225–234. doi:10.1111/j.1574-6968.1993.tb05814.x

    Article  CAS  Google Scholar 

  • Balk M, Laverman AM, Keuskamp JA, Laanbroek HJ (2015) Nitrate ammonification in mangrove soils: a hidden source of nitrite? Frontiers in Microbiology. doi:10.3389/fmicb.2015.00166

    Google Scholar 

  • Burton DL, Beauchamp EC (1984) Field techniques using the acetylene blockage of nitrous-oxide reduction to measure denitrification. Canadian Journal of Soil Science 64:555–562

    Article  CAS  Google Scholar 

  • Cao Y, Green PG, Holden PA (2008) Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Applied and Environmental Microbiology 74:7585–7595. doi:10.1128/aem.01221-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GC, Tam NFY, Ye Y (2012) Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biology and Biochemistry 48:175–181. doi:10.1016/j.soilbio.2012.01.029

    Article  CAS  Google Scholar 

  • Chen WB, Liu WC, Hsu MH (2015) Modeling assessment of a saltwater intrusion and a transport time scale response to sea-level rise in a tidal estuary. Environmental Fluid Mechanics 15:491–514

    Article  CAS  Google Scholar 

  • Chiu CY, Chou CH (1991) The distribution and influence of heavy-metals in mangrove forests of the Tamshui estuary in Taiwan. Soil Science & Plant Nutrition 37:659–669

    Article  CAS  Google Scholar 

  • Chiu CY, Chou CH (1993) Oxidation in the rhizosphere of mangrove Kandelia candel seedlings. Soil Science & Plant Nutrition 39:725–731

    Article  CAS  Google Scholar 

  • Chiu CY, Lee SC, Juang HT, Hur MT, Hwang YH (1996) Nitrogen nutritional status and fate of applied N in mangrove soils. Botanical Bulletin of Academia Sinica 37:191–196

    CAS  Google Scholar 

  • Chiu CY, Lee SC, Chen TH, Tian GL (2004) Denitrification associated N loss in mangrove soil. Nutrient Cycling in Agroecosystems 69:185–189. doi:10.1023/b:fres.0000035170.46218.92

    Article  CAS  Google Scholar 

  • Coyne M (1999) Soil microbiology: an exploratory approach. Delmar Publishers, New York, USA

    Google Scholar 

  • Craft C, Clough J, Ehman J et al (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7:73–78. doi:10.1890/070219

    Article  Google Scholar 

  • Etheridge JR, Birgand F, Osborne JA, Osburn CL, Burchell MR II, Irving J (2014) Using in situ ultraviolet-visual spectroscopy to measure nitrogen, carbon, phosphorus, and suspended solids concentrations at a high frequency in a brackish tidal marsh. Limnology and Oceanography: Methods 12:10–22. doi:10.4319/lom.2014.12.10

    Article  Google Scholar 

  • Etheridge JR, Birgand F, Burchell MR II (2015) Quantifying nutrient and suspended solids fluxes in a constructed tidal marsh following rainfall: the value of capturing the rapid changes in flow and concentrations. Ecological Engineering 78:41–52. doi:10.1016/j.ecoleng.2014.05.021

    Article  Google Scholar 

  • Fernandes SO, Gonsalves MJ, Michotey VD, Bonin PC, LokaBharathi PA (2013) Denitrification activity is closely linked to the total ambient Fe concentration in mangrove sediments of Goa, India. Estuarine, Coastal and Shelf Science 131:64–74. doi:10.1016/j.ecss.2013.08.008

    Article  CAS  Google Scholar 

  • Fogler HS (1999) Element of chemical reaction engineering. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1:117–141. doi:10.1146/annurev.marine.010908.163930

    Article  PubMed  Google Scholar 

  • Harrison MD, Miller AJ, Groffman PM, Mayer PM, Kaushal SS (2014) Hydrologic controls on nitrogen and phosphorous dynamics in relict oxbow wetlands adjacent to an urban restored stream. Journal of the American Water Resources Association 50:1365–1382. doi:10.1111/jawr.12193

    Article  CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils 33:265–278. doi:10.1007/s003740000319

    Article  CAS  Google Scholar 

  • Hume NP, Fleming MS, Horne AJ (2002) Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Science Society of America Journal 66:1706–1712

    Article  CAS  Google Scholar 

  • Hunt PG, Miller JO, Ducey TF, Lang MW, Szogi AA, McCarty G (2014) Denitrification in soils of hydrologically restored wetlands relative to natural and converted wetlands in the Mid-Atlantic coastal plain of the USA. Ecological Engineering 71:438–447. doi:10.1016/j.ecoleng.2014.07.040

    Article  Google Scholar 

  • IPCC (1994) Intergovernmental panel on climate change, radioactive forcing of climate change. The 1994 Report of the Scientific Assessment working Group of IPCC, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In. IPCC. http://www.climatechange2013.org/. Accessed 7 Oct 2015

  • Jordan TE, Correll DL (1991) Continuous automated sampling of tidal exchanges of nutrients by brackish marshes. Estuarine, Coastal and Shelf Science 32:527–545. doi:10.1016/0272-7714(91)90073-k

    Article  CAS  Google Scholar 

  • Keuskamp JA, Schmitt H, Laanbroek HJ, Verhoeven JTA, Hefting MM (2013) Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biology and Biochemistry 57:822–829. doi:10.1016/j.soilbio.2012.08.007

    Article  CAS  Google Scholar 

  • Kralova M, Masscheleyn PH, Lindau CW, Patrick WH (1992) Production of dinitrogen and nitrous-oxide in soil suspensions as affected by redox potential. Water, Air, and Soil Pollution 61:37–45. doi:10.1007/bf00478364

    Article  CAS  Google Scholar 

  • Krauss KW, Whitbeck JL (2012) Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA). Wetlands 32:73–81

    Article  Google Scholar 

  • Larsen L, Moseman S, Santoro AE, Hopfensperger K, Burgin A (2010) A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems. Paper presented at the Ecological Dissertations in the Aquatic Sciences Symposium Proceeding VIII, Chapter 5

  • Maag M, Malinovsky M, Nielsen SM (1997) Kinetics and temperature dependence of potential denitrification in riparian soils. Journal of Environmental Quality 26:215–23

    Article  CAS  Google Scholar 

  • Marton JM, Herbert ER, Craft CB (2012) Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils. Wetlands 32:347–357. doi:10.1007/s13157-012-0270-3

    Article  Google Scholar 

  • Messer JJ, Brezonik PL (1983) Laboratory evaluation of kinetic parameters for lake sediment denitrification models. Ecological Modelling 21:277–86

    Article  Google Scholar 

  • Negrin VL, de Villalobos AE, Gonzalez Trilla G, Botte SE, Marcovecchio JE (2012) Above- and belowground biomass and nutrient pools of Spartina alterniflora (smooth cordgrass) in a South American salt marsh. Chemistry and Ecology 28(4):391–404. doi:10.1080/02757540.2012.666529

    Article  CAS  Google Scholar 

  • Pidgeon E (2009) Carbon sequestration by coastal marine habitats: important missing sinks. In: Laffoley D, Grimsditch G (eds) The management of natural coastal carbon sinks, vol 53. IUCN, Gland, Switzerland, pp 47–51

    Google Scholar 

  • Rejmankova E, Houdkova K (2006) Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80:245–262. doi:10.1007/s10533-006-9021-y

    Article  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture, and conservation. Kluwer Academic Publishers, Dordrecht, Netherlands

    Book  Google Scholar 

  • Schaefer SC, Alber M (2007) Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry 85:333–346. doi:10.1007/s10533-007-9144-9

    Article  Google Scholar 

  • Seo DC, Yu K, Delaune RD (2008) Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. Archives of Agronomy and Soil Science 54:249–257. doi:10.1080/03650340701679075

    Article  Google Scholar 

  • Sheibley RW, Jackman AP, Duff JH, Triska FJ (2003) Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Advances in Water Resources 26(9):977–987. doi:10.1016/s0309-1708(03)00088-5

    Article  CAS  Google Scholar 

  • Slinger D, Tension K (2005) Salinity glove box guide for NSW murray & murrumbidgee. NSW Department of Primary Industries

  • Susilo A, Ridd PV, Thomas S (2005) Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps. Wetlands Ecology and Management 13:377–388. doi:10.1007/s11273-004-0164-0

    Article  Google Scholar 

  • Thompson SP, Paerl HW, Go MC (1995) Seasonal patterns of nitrification and denitrification in a natural and a restored salt-marsh. Estuaries 18:399–408. doi:10.2307/1352322

    Article  CAS  Google Scholar 

  • USEPA (2001) Nutrient criteria technical guidance manual: Estuarine and coastal marine waters. https://www.epa.gov/nutrient-policy-data/nutrient-criteria-technical-guidance-manual-estuarine-and-coastal-waters. Accessed 7 Oct 2015

  • Verhoeven JTA, Arheimer B, Yin CQ, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends in Ecology & Evolution 21:96–103. doi:10.1016/j.tree.2005.11.015

    Article  Google Scholar 

  • Warneke S, Schipper LA, Matiasek MG, Scow KM, Cameron S, Bruesewitz DA, McDonald IR (2011) Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Research 45:5463–5475. doi:10.1016/j.watres.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen LS, Jiann KT, Liu KK (2008) Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science 78:694–704

    Article  Google Scholar 

  • Weston NB, Dixon RE, Joye SB (2006) Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research 111:1–14

    Article  Google Scholar 

  • Wigand C, McKinney RA, Chintala MM, Charpentier MA, Groffman PM (2004) Denitrification enzyme activity of fringe salt marshes in New England (USA). Journal of Environmental Quality 33:1144–1151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yu Chiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiau, YJ., Dham, V., Tian, G. et al. Factors Influencing Removal of Sewage Nitrogen Through Denitrification in Mangrove Soils. Wetlands 36, 621–630 (2016). https://doi.org/10.1007/s13157-016-0770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0770-7

Keywords

Navigation