Skip to main content
Log in

Estimation du risque d’introduction du virus de la fièvre de la vallée du Rift en Tunisie par le moustique Culex pipiens

Assessment of the risk of introduction to Tunisia of the Rift Valley fever virus by the mosquito Culex pipiens

  • Épidémiologie / Epidemiology
  • Published:
Bulletin de la Société de pathologie exotique

Résumé

Le moustique Culex pipiens a été impliqué dans la transmission du virus West Nile en Tunisie. Les caractéristiques bioécologiques de l’espèce ainsi que certains facteurs environnementaux ont favorisé l’émergence de ce virus dans une région jusqu’alors indemne. Ce scénario fait craindre l’émergence d’autres arbovirus dont le virus de la fièvre de la vallée du Rift (FVR) qui affecte principalement les petits ruminants. La proximité de pays où circule le virus de la FVR avec lesquels la Tunisie entretient le commerce d’animaux n’est pas sans risque. Pour mesurer le risque potentiel d’introduction du virus de la FVR en Tunisie, différents aspects ont été étudiés : la compétence vectorielle des populations de Cx. pipiens et leur niveau de différenciation génétique. Nous avons mis en évidence une compétence vectorielle faible vis-à-vis du virus de la FVR et une différenciation forte entre populations témoignant d’une faible capacité de dispersion de l’espèce. Ainsi, nous concluons que même si le virus de la FVR était introduit, l’amplification virale dans le vecteur Cx. pipiens, tout en étant possible, ne serait pas associée à une dissémination du virus par l’intermédiaire du moustique. Toutefois, le caractère émergent du virus de la FVR et la présence d’autres espèces potentiellement vectrices (e.g. Ochlerotatus caspius) doivent imposer le maintien et même le renforcement des surveillances zoosanitaire et entomologique afin de limiter le risque d’introduction et de circulation du virus de la FVR en Tunisie.

Abstract

The mosquito Culex pipiens has been involved as vector of the West Nile virus in Tunisia. Its bio-ecological characteristics in combination with some environmental factors have favoured the emergence of this virus in a West-Nile free zone. This leads to question about the potential risk of introducing another arbovirus, the Rift Valley fever (RVF) virus, in Tunisia from neighbouring countries where RVF circulates. In this study, we have evaluated the vector competence of different populations of Cx. pipiens towards two strains of RVF virus, the virulent ZH548 and the avirulent Clone 13 by experimental infections and the genetic differentiation of these populations of Cx. pipiens using four microsatellite loci. We found disseminated infection rates ranging from 0% to 14.7% and a high genetic differentiation among populations without any geographical pattern (no isolation by distance). Thus, although Cx. pipiens is able to sustain an amplification of RVF virus, viral dissemination through mosquito dispersal would be unlikely. However, as RVF is an emerging disease transmitted by several other potential mosquito species (e.g. Ochlerotatus caspius), attention should be maintained to survey livestock and mosquitoes in Tunisia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Apperson CS, Harrison BA, Unnasch TR, et al (2002) Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39(5):777–785

    Article  PubMed  Google Scholar 

  2. Arthur RR, El Sharkawy MS, Cope SE, et al (1993) Recurrence of Rift Valley Fever in Egypt. Lancet 342(8880):1149–1150

    Article  PubMed  CAS  Google Scholar 

  3. Brownie J, Shawcross S, Theaker J, et al (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25(16):3235–3241

    Article  PubMed  CAS  Google Scholar 

  4. Brunhes J, Rhaiem A, Geoffroy B, Hervy JP (2000) Les moustiques de l’Afrique méditerranéenne. Logiciel d’identification et d’enseignement. IRD et IPT, CD-ROM Collection didactique IRD Éditions, Montpellier, France

  5. Byrne K, Nichols R (1999) Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82(Pt1):7–15

    Article  PubMed  Google Scholar 

  6. Dahl C (1988) Taxonomic studies on Culex pipiens and Cx. torrentium. Biosystematics of Haematophagous insects. Oxford Systematics Association, Oxford, pp 149–175

    Google Scholar 

  7. Dancesco P, Chadli A, Kchouk M, Horac M (1975) À propos d’un biotope saisonnier hivernal autogenicus. Bull Soc Pathol Exot Filiales 68(5):503–508

    PubMed  CAS  Google Scholar 

  8. Daubney R, Hudson JR, Garnham PC (1931) Enzootic hepatitis or Rift Valley Fever: an undescribed virus disease of sheep, cattle and man from East Africa. J Pathol Bacteriol 34:545–549

    Article  Google Scholar 

  9. Dobzhansky T (1937) Genetics and the Origin of Species. In: The Columbia classics in evolutionary series. Columbia Univ. Press, New York, 364 p

    Google Scholar 

  10. Dobzhansky T, Pavan C (1943) Studies on Brazilian species of Drosophila. Bolm Fac Filos Cienc S Paulo 36: 7–72

    Google Scholar 

  11. Durand JP, Simon F, Tolou H (2004) Virus West Nile: à nouveau en France chez l’homme et les chevaux. Rev Prat 54(7):703–710

    PubMed  Google Scholar 

  12. El Harrak M, Le Guenno B, Gounon P (1997) Isolement du virus West Nile au Maroc. Virologie 1:248–249

    Google Scholar 

  13. Faraj C, Elkohli M, Lyagoubi M (2006) Cycle gonotrophique de Culex pipiens (Diptera: Culicidae), vecteur potentiel du virus West Nile, au Maroc: estimation de la durée en laboratoire. Bull Soc Pathol Exot 99(2):119–121 [http://www.pathexo.fr/documents/articles-bull/T99-2-2846-3p.pdf]

    PubMed  CAS  Google Scholar 

  14. Farid HA, Hammad RE, Hassan MM, et al (2001) Detection of Wuchereria bancrofti in mosquitoes by the polymerase chain reaction: a potentially useful tool for large-scale control programmes. Trans R Soc Trop Med Hyg 95(1):29–32

    Article  PubMed  CAS  Google Scholar 

  15. Fonseca DM, Keyghobadi N, Malcolm CA, et al (2004) Emerging vectors in the Culex pipiens complex. Science 303(5663):1535–1538

    Article  PubMed  CAS  Google Scholar 

  16. Fonseca DM, LaPointe DA, Fleischer RC (2000) Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol Ecol 9(11):1803–1814

    Article  PubMed  CAS  Google Scholar 

  17. Garbouj M, Bejaoui M, Aloui H, Ben Ghorbal M (2003) La maladie du Nil occidental. Bull Epidemiol 3:4–6

    Google Scholar 

  18. Gerrard SR, Bird BH, Albariño CG, Nichol ST (2007) The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 359(2):459–465. (Epub 2006 Oct 30)

    Article  PubMed  CAS  Google Scholar 

  19. Giorgi C, Accardi L, Nicoletti L, et al (1991) Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian Sandfly fever, and Uukuniemi viruses. Virology 180(2):738–753

    Article  PubMed  CAS  Google Scholar 

  20. Gomes B, Sousa CA, Novo MT, et al (2009) Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol 9:262

    Article  PubMed  Google Scholar 

  21. Gubler DJ, Nalim S, Tan R, et al (1979) Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28(6):1045–1052

    PubMed  CAS  Google Scholar 

  22. Harbach RE, Harrison BA, Gad AM (1984) Culex molestus Forskål (Diptera: Culicidae): neotype designation, description, variation and taxonomic status. Proc Entomol Soc Wash 86:521–542

    Google Scholar 

  23. Hamer GL, Walker ED, Brawn JD, et al (2008) Rapid amplification of West Nile virus: the role of hatch-year birds. Vector Borne Zoonotic Dis 8(1):57–67

    Article  PubMed  Google Scholar 

  24. Hayes CG (2001) West Nile virus: Uganda, 1937, to New York City, 1999. Ann N Y Acad Sci 951:25–37

    Article  PubMed  CAS  Google Scholar 

  25. Hoogstraal H, Meegan JM, Khalil GM, Adham FK (1979) The Rift Valley fever epizootic in Egypt 1977–1978. 2. Ecological and entomological studies. Trans R Soc Trop Med Hyg 73(6):624–629

    Article  PubMed  CAS  Google Scholar 

  26. Huang S, Hamer GL, Molaei G, et al (2009) Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9(6):637–642

    Article  PubMed  Google Scholar 

  27. Hubby JL, Lewontin RC (1966) A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54(2):577–594

    PubMed  CAS  Google Scholar 

  28. Juminer B, Kchouk M, Rioux JA, Ben Osman F (1964) À propos des culicidés vulnérants de la banlieue littorale de Tunis. Arch Inst Pasteur Tunis 41(2):23–32

    Google Scholar 

  29. Jup PG, Kemp A, Grobbelaar A, et al (2002) The 2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies. Med Vet Entomol 16(3):245–252

    Article  PubMed  CAS  Google Scholar 

  30. Keyghobadi N, Matrone M, Ebel GD, et al (2004) Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4:20–22

    Article  CAS  Google Scholar 

  31. Kilpatrick AM, Daszak P, Jones MJ, et al (2006) Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273(1599):2327–2333

    Article  PubMed  Google Scholar 

  32. Kilpatrick AM, Kramer LD, Jones MJ, et al (2007) Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77(4):667–671

    PubMed  Google Scholar 

  33. Krida G, Rhaiem A, Bouattour A (1997) Effet de la qualité des eaux sur l’expression du potentiel biotique du moustique Culex pipiens L. dans la région de Ben Arous (sud de Tunis). Bull Soc Entomol France 102(2):143–150

    Google Scholar 

  34. Kuberski TT, Rosen L (1977) A simple technique for the detection of dengue antigen in mosquitoes by immunofluorescence. Am J Trop Med Hyg 26(3):533–537

    PubMed  CAS  Google Scholar 

  35. Laven H (1951) Crossing experiments with Culex strains. Evolution 5:310–375

    Article  Google Scholar 

  36. Le Guenno B, Bougermouh A, Azzam T, Bouakaz R (1996) West Nile: a deadly virus? Lancet 348(9037):1315

    Article  PubMed  Google Scholar 

  37. Lee DS, Yoon HK, Kim HS, Lee KW (1970) Studies on the life cycle of Culex pipiens pallens in Korea. Kisaengchunghak Chapchi 8(1):36–38

    PubMed  Google Scholar 

  38. Lewontin RC, Hubby JL (1966) A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54(2):595–609

    PubMed  CAS  Google Scholar 

  39. Linthicum KJ, Bailey CL, Davies FG, Tucker CJ (1987) Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery. Science 235(4796):1656–1659

    Article  PubMed  CAS  Google Scholar 

  40. Linthicum KJ, Davies FG, Kairo A, Bailey CL (1985) Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. J Hyg (Lond) 95(1):197–209

    Article  CAS  Google Scholar 

  41. Mattingly PF, Rozeboom LE, Knight KL, et al (1951) The Culex pipiens complex. Trans Roy Ent Soc London 102:331–382

    Article  Google Scholar 

  42. Mayr E (1942) Systematics and the Origin of Species. Columbia University Press, New York

    Google Scholar 

  43. Meegan JM (1979) The Rift Valley fever epizootic in Egypt 1977–1978. 1. Description of the epizzotic and virological studies. Trans R Soc Trop Med Hyg 73(6):618–623

    Article  PubMed  CAS  Google Scholar 

  44. Meegan JM, Bailey CL (1988) Rift Valley fever. In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC Press, Boca Raton, FL, pp 61–76

    Google Scholar 

  45. Meegan JM, Khalil GM, Hoogstraal H, Adham FK (1980) Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am J Trop Med Hyg 29(6):1405–1410

    PubMed  CAS  Google Scholar 

  46. Morvan J, Rollin PE, Laventure S, et al (1992) Rift Valley fever epizootic in the central highlands of Madagascar. Res Virol 143(6):407–415

    Article  PubMed  CAS  Google Scholar 

  47. Moutailler S, Bouloy M, Failloux AB (2007) Short report: efficient oral infection of Culex pipiens quinquefasciatus by Rift Valley fever virus using a cotton stick support. Am J Trop Med Hyg 76(5):827–829

    PubMed  Google Scholar 

  48. Moutailler S, Krida G, Schaffner F, et al (2008) Potential vectors of Rift Valley Fever virus in the Mediterranean Region. Vector Borne Zoonotic Dis 8(6):749–753

    Article  PubMed  Google Scholar 

  49. Murgue B, Murri S, Zientara S, et al (2001) West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg Infect Dis 7(4):692–696

    Article  PubMed  CAS  Google Scholar 

  50. Nabeth P, Kane Y, Abdalahi MO, et al (2001) Rift Valley fever outbreak, Mauritania, 1998: seroepidemiologic, virologic, entomologic, and zoologic investigations. Emerg Infect Dis 7(6):1052–1054

    Article  PubMed  CAS  Google Scholar 

  51. Nudelman S, Galun R, Kitron U, Spielman A (1988) Physiological characteristics of Culex pipiens populations in the middle East. Med Vet Entomol 2(2):161–169

    Article  PubMed  CAS  Google Scholar 

  52. OMS (2007) Fièvre de la vallée du Rift dans l’Union des Comores. Bull Hebdo Int no 1036

  53. OMS (2008) Fièvre de la Vallée du Rift au Soudan. Bull Epidemiol Hebdo no5

  54. Richards AG (1941) Differentiation between toxic and suffocating effects of petroleum oils on larvae of the house mosquito (Culex pipiens L.) [Diptera]. Trans Am Entomol Soc 67:161–196

    CAS  Google Scholar 

  55. Rioux JA, Juminer B, Kchouk M, Croset H (1965) Présence du caractère autogène chez Culex piplens pipiens L. dans un biotope épigé de l’Île de Djerba. Arch Inst Pasteur Tunis 42:1–8

    Google Scholar 

  56. Roubaud E (1933) Essai synthétique sur la vie du moustique commun Culex pipiens (L.). Ann Sc Nat Bot Zool 16: 165–168

    Google Scholar 

  57. Roubaud E (1939) Le pouvoir autogène chez le biotype nordafricain du moustique commun Culex pipiens (L.). Bull Soc Pathol Exot 32:172–175

    Google Scholar 

  58. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    PubMed  CAS  Google Scholar 

  59. Smith JL, Fonseca DM (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70(4):339–345

    PubMed  CAS  Google Scholar 

  60. Spielman A (2001) Structure and seasonality of Nearctic Culex pipiens populations. Ann NY Acad Sci 951:220–234

    Article  PubMed  CAS  Google Scholar 

  61. Subra R (1982) The distribution and frequency of Culex pipiens quinquefasciatus Say 1823 (Diptera, Culicidae) breeding places on the Kenya Coast in relation to human sociological factors. J Trop Med Hyg 85(2):57–61

    PubMed  CAS  Google Scholar 

  62. Tempelis CH (1975) Host-feeding patterns of mosquitoes, with a review of advances in analysis of blood meals by serology. J Med Entomol 11(6):635–653

    PubMed  CAS  Google Scholar 

  63. Tesh RB, Gubler DJ, Rosen L (1976) Variation among geographic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg 25(2):326–335

    PubMed  CAS  Google Scholar 

  64. Triki H, Murri S, Le Guenno B, et al (2001) Méningoencéphalite à arbovirus West Nile en Tunisie. Med Trop 61(6):487–490

    CAS  Google Scholar 

  65. Tsai TF, Mitchell CJ (1989) St Louis encephalitis. In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC Press, Boca Raton, FL, pp 113–143

    Google Scholar 

  66. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW (2001) Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38(2):130–134

    Article  PubMed  CAS  Google Scholar 

  67. Vermeil C (1954) Nouvelle contribution à l’étude du complexe Culex pipiens en Tunisie. Bull Soc Pathol Exot 47:841–843

    CAS  Google Scholar 

  68. Villani F, Urbanelli S, Gad A, et al (1986) Electrophoretic research on populations of Egyptian and Israeli Culex pipiens (Diptera, Culicidae). Ann Ist Super Sanita 22(1):373–375

    PubMed  CAS  Google Scholar 

  69. Vinogradova EB (2000) Mosquitoes Culex pipiens pipiens: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Pensoft Pulishers, Sofia, 280 p

    Google Scholar 

  70. Walsh J (1988) Rift Valley fever rears its head. Science 240(4858):1397–1399

    Article  PubMed  CAS  Google Scholar 

  71. Woods CW, Karpati AM, Grein T, et al (2002) An outbreak of Rift Valley Fever in Northeastern Kenya, 1997–1998. Emerg Infect Dis 8(2):138–144

    Article  PubMed  Google Scholar 

  72. Wright S (1931) Evolution in Mendelian populations. Genetics 16(2):97–159

    PubMed  CAS  Google Scholar 

  73. Zeller HG, Fontenille D, Traore-Lamizana M (1997) Enzootic activity of Rift Valley fever virus in Senegal. Am J Trop Med Hyg 56(3):265–272

    PubMed  CAS  Google Scholar 

  74. Zimmerman JH, Hanafi HA, Abbassy MM (1985) Host-feeding patterns of Culex mosquitoes (Diptera: Culicidae) on farms in Gharbiya Governorate, Egypt. J Med Entomol 22(1):82–87

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -B. Failloux.

About this article

Cite this article

Krida, G., Diancourt, L., Bouattour, A. et al. Estimation du risque d’introduction du virus de la fièvre de la vallée du Rift en Tunisie par le moustique Culex pipiens . Bull. Soc. Pathol. Exot. 104, 250–259 (2011). https://doi.org/10.1007/s13149-010-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13149-010-0122-4

Mots clés

Keywords

Navigation