Skip to main content
Log in

Teacher Press to Establish What Counts as an Acceptable Explanation Grounded in Problem Settings

Lehrkräfte forcieren die Klärung, was in anwendungsorientierten Zusammenhängen als angemessene mathematische Erklärung gilt

  • Originalarbeit/Original Article
  • Published:
Journal für Mathematik-Didaktik Aims and scope Submit manuscript

Abstract

This study elaborates on the sociomathematical norm of what counts as an acceptable mathematical explanation by focusing on cases in which tasks are grounded in settings that exist outside pure mathematics. We propose that establishing this norm supports the more equitable distribution of student learning opportunities by making the rationale for particular solution methods more accessible to all students. The data that we analyzed to understand the specific strategies teachers use to initiate and guide the negotiation of this norm come from video-recordings of two 7th-grade teachers’ classroom instruction after a short, targeted professional development. The analysis we conducted is grounded in the symbolic interactionist view that normative ways of communicating and acting are negotiated through interaction on an ongoing basis. Our findings show that the teachers used two strategies to support students to ground their explanations in extra-mathematical settings, but these strategies were largely unsuccessful. We use excerpts from classroom discussions to explain why these strategies did not work and make suggestions for both future research and professional development.

Zusammenfassung

Die Studie befasst sich mit der soziomathematischen Norm, was in anwendungsorientierten Zusammenhängen als angemessene mathematische Erklärung gilt. Es wird vorgeschlagen, dass die Etablierung dieser Norm zu einer gerechteren Verteilung von Lernchancen beträgt, indem sie die Begründung bestimmter Lösungsverfahren allen Lernenden zugänglicher macht. Die analysierten Daten stammen aus Videoaufzeichnungen des Unterrichts zweier Lehrkräfte in Jahrgangsstufe 7 und wurden mit dem Ziel analysiert, die spezifischen Strategien zu verstehen, mit denen Lehrkräfte die Aushandlung dieser Norm initiieren und begleiten. Die Analysen fußen auf der symbolisch-interaktionistischen Sichtweise, dass normierendes Kommunizieren und Handeln in der Unterrichtsinteraktion fortwährend ausgehandelt wird. Unsere Ergebnisse zeigen, dass die Lehrkräfte zwei unterschiedliche Strategien einsetzen, um die Schülerinnen und Schüler dabei zu unterstützen, Erklärungen in anwendungsorientierten Zusammenhängen zu entwickeln, dass diese Strategien jedoch weitgehend erfolglos waren. Anhand von Ausschnitten aus Unterrichtsgesprächen erläutern wir, warum diese Strategien erfolglos bleiben, und machen Vorschläge sowohl für die zukünftige Forschung als auch für die Professionalisierung von Lehrkräften.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauersfeld, H., Krummheuer, G., Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H. Steiner A. Vermandel (Eds.), Foundations and methodology of the discipline of mathematics education. Proceedings of the Theory of Mathematical Education (TME) Conference. (pp. 174–188). In.

  • Blumer, H. (1969). Symbolic interactionism: perspective and method. Prentice-Hall.

    Google Scholar 

  • Cobb, P. (1998). Theorizing about mathematical conversations and learning from practice. For the Learning of Mathematics, 18(1), 46–48.

    Google Scholar 

  • Cobb, P., Yackel, E., Wood, T. (1989). Young children’s emotional acts during mathematical problem solving. In D. B. McLeod V. M. Adams (Eds.), Affect and mathematical problem solving: A new perspective (pp. 117–148). Springer.

    Chapter  Google Scholar 

  • Doerr, H. (2006). Examining the tasks of teaching when using students’ mathematical thinking. Educational Studies in Mathematics, 62(1), 3–24. https://doi.org/10.1007/s10649-006-4437-9.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. D. Reidel.

    Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Kluwer Academic Publishers.

    Google Scholar 

  • Glaser, B. G., Strauss, A. L. (1967). Discovery of grounded theory. Aldine.

    Google Scholar 

  • Gravemeijer, K. (1994). Developing realistic mathematics education. CDPress.

    Google Scholar 

  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

    Article  Google Scholar 

  • Henningsen, M., Stein, M. K. (1997). Mathematical tasks and student cognition: classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524–549. https://doi.org/10.5951/jresematheduc.28.5.0524.

    Article  Google Scholar 

  • vom Hofe, R., Blum, W. (2016). “Grundvorstellungen” as a category of subject-matter didactics. Journal fur Mathematik Didaktik, 37(Suppl 1), 225–254. https://doi.org/10.1007/s13138-016-0107-3.

    Article  Google Scholar 

  • Kamii, C. (1985). Young children reinvent arithmetic: Implications of Piaget’s theory. Teachers College Press.

    Google Scholar 

  • Kazemi, E., Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary mathematics classrooms. Elementary School Journal, 102(1), 59–80. https://doi.org/10.1177/0022057409189001-209.

    Article  Google Scholar 

  • Lampert, M., Beasley, H., Ghousseini, H., Kazemi, E., Franke, M. L. (2010). Using designed instructional activities to enable novices to manage ambitious mathematics teaching. In M. K. Stein L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 129–141). Springer.

    Chapter  Google Scholar 

  • McClain, K., Cobb, P. (1998). The role of imagery and discourse in supporting students’ mathematical development. In M. Lampert M. Blunt (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 56–81). Cambridge University Press.

    Chapter  Google Scholar 

  • Mehan, H. (1979). Learning lessons: social organization in the classroom. Harvard University Press.

    Book  Google Scholar 

  • Pirie, S., Kieren, T. (1989). A recursive theory of mathematical understanding. For the Learning of Mathematics, 9(3), 7–11.

    Google Scholar 

  • Reinke, L. T. (2020). Contextual problems as conceptual anchors: an illustrative case. Research in Mathematics Education, 22(1), 3–21. https://doi.org/10.1080/14794802.2019.1618731.

    Article  Google Scholar 

  • Reinke, L. T., Casto, A. R. (2022). Motivators or conceptual foundation? Investigating the development of teachers’ conceptions of contextual problems. Mathematics Education Research Journal, 34, 113–137. https://doi.org/10.1007/s13394-020-00329-8.

    Article  Google Scholar 

  • Reinke, L., Stephan, M., Casto, M., Ayan, R. (2023). Teachers’ press for contextualization to ground students’ mathematical understanding of ratio. Journal of Mathematics Teacher Education, 26, 335–361. https://doi.org/10.1007/s10857-022-09531-w.

    Article  Google Scholar 

  • Schutz, A. (1962). The problem of social reality. Martinus Nijhoff.

    Google Scholar 

  • Smith, M., Stein, M. (2011). Five practices for orchestrating productive mathematics discussions. National Council of Teachers of Mathematics.

    Google Scholar 

  • Stephan, M., Pugalee, D., Cline, J., Cline, C. (2016). Lesson imaging in math and science: anticipating student ideas and questions for deeper STEM learning. Association of Supervisors and Curriculum Designers.

    Google Scholar 

  • Stephan, M. L., Reinke, L. T., Cline, J. K. (2020). Beyond hooks: real-world contexts as anchors for instruction. Mathematics Teacher: Learning and Teaching PK-12, 113(10), 821–827.

    Article  Google Scholar 

  • Strauss, A., Corbin, J. (1998). Basics of qualitative research: techniques and procedures for developing grounded theory. SAGE.

    Google Scholar 

  • Streefland, L. (1985). Wiskunde als activiteit en de realiteitals bron. Nieuwe Wiskrant, 5(1), 60–67.

    Google Scholar 

  • Thompson, P. (1988). Quantitative concepts as a foundation for algebraic reasoning: sufficiency, necessity, and cognitive obstacles. In M. Behr, C. Lacampagne M. Wheeler (Eds.), Proceedings of the annual conference of the international group for the psychology of mathematics education (Vol. 1, pp. 163–170). Northern Illinois University.

    Google Scholar 

  • Thompson, P. W. (1996). Imagery and the development of mathematical reasoning. In L. P. Steffe, B. Greer, P. Nesher, P. Cobb G. Goldin (Eds.), Theories of learning mathematics (pp. 267–283). Erlbaum.

    Google Scholar 

  • Thompson, A., Philipp, R., Thompson, P., Boyd, B. (1994). Calculational and conceptual orientations in teaching mathematics. In D. Aichele A. Coxford (Eds.), Professional development for teachers of mathematics. 1994 yearbook of the national council of teachers of mathematics. (pp. 79–92). National Council of Teachers of Mathematics.

    Google Scholar 

  • Treffers, A. (1987). Three dimensions: a model of goal and theory description in mathematics instruction-the Wiskobas Project. Reidel.

    Book  Google Scholar 

  • Van den Heuvel-Panhuizen, M., Drijvers, P. (2014). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 521–525). Springer.

    Chapter  Google Scholar 

  • Verschaffel, L., Greer, B., De Corte, E. (2000). Making sense of word problems. Swets Zeitlinger B.V..

    Google Scholar 

  • Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathématiques, 6(1), 69–118.

    Google Scholar 

  • Yackel, E., Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education. https://doi.org/10.2307/749877.

    Article  Google Scholar 

Download references

Funding

This work was supported, in part, by funds provided by UNC Charlotte.

Author information

Authors and Affiliations

Authors

Contributions

All three authors conceptualized the manuscript. The first two authors took the lead on writing and revising the manuscript with the third author providing extensive feedback on both the original submission and revision.

Corresponding author

Correspondence to Michelle Stephan.

Ethics declarations

Conflict of Interest

L. Reinke, M. Stephan and P. Cobb declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinke, L., Stephan, M. & Cobb, P. Teacher Press to Establish What Counts as an Acceptable Explanation Grounded in Problem Settings. J Math Didakt 45, 2 (2024). https://doi.org/10.1007/s13138-023-00225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13138-023-00225-1

Keywords

Schlüsselwörter

Navigation